Al-Driven Qualitative Research in Smart Cities: Enhancing Emotional Resilience in Youth and Children

Authors

DOI:

https://doi.org/10.4108/eetismla.9497

Keywords:

artificial intelligence, emotional resilience, youth, children, smart cities.

Abstract

INTRODUCTION: Industry 5.0 has brought advanced AI-driven technologies into qualitative research and data analysis, particularly in systems that are very important to the purpose. This research examines the use of AI algorithms to evaluate emotional resilience in kids and children in smart cities. The study underscores Al's role in qualitative research to substantiate the efficacy of these algorithms in assessing emotional resilience and advocating for interventions that improve emotional well-being. The main goal of this research is to see how accurate and reliable AI algorithms are when they measure emotional resilience. The goal of the project is to leverage these technologies to make treatments that make kids and teens in smart cities feel better emotionally, which will help them grow up in a caring environment.

METHODOLOGY: A quantitative, descriptive, and exploratory methodology is used, using data gathered from children to examine emotional reactions via deep neural network models. These models are designed to find levels of resilience with amazing accuracy, sensitivity, and specificity, with the goal of getting accuracy rates above eighty percent.

RESULTS: The results indicate that AI-driven technology may provide comprehensive qualitative insights into the emotional resilience of adolescents and children. The research underscores the capacity of these technologies to provide personalized treatments and assistance, hence improving emotional well-being in smart city contexts. The findings indicate that AI might enhance emotional resilience, facilitate early detection of emotional problems, and enable prompt assistance. The suggested model was able to find emotional resilience with 94% accuracy, 92% sensitivity, 88% specificity, and 95% AUC. These results demonstrate the efficacy of AI-driven approaches in the early detection of emotional problems among adolescents and teenagers inside smart city environments. The research shows that AI technologies are very important for figuring out how to help kids and teens become more emotionally strong. It backs the employment of these technologies in the public health and education systems of smart cities to help kids develop emotionally. This plan makes it simpler to get in early and helps create a strong, supportive community.

Downloads

Download data is not yet available.

References

[1] Girelli F, Rossetti MG, Perlini C, Bellani M. Neural correlates of CBT-based interventions for bipolar disorder: A scoping review. J Psychiatr Res. 2024;172:351-9. doi:10.1016/j.jpsychires.2024.02.054 DOI: https://doi.org/10.1016/j.jpsychires.2024.02.054

[2] Goldsmith ES, Miller WA, Koffel E, Ullman K, Landsteiner A, Stroebel B, et al. Barriers and facilitators of evidence-based psychotherapies for chronic pain in adults: A systematic review. J Pain. 2023;24(5):742-69. doi:10.1016/j.jpain.2023.02.026 DOI: https://doi.org/10.1016/j.jpain.2023.02.026

[3] Hagberg T, Manhem P, Oscarsson M, Michel F, Andersson G, Carlbring P. Efficacy of transdiagnostic cognitive-behavioral therapy for assertiveness: A randomized controlled trial. Internet Interv. 2023;32:100629. doi:10.1016/j.invent.2023.100629 DOI: https://doi.org/10.1016/j.invent.2023.100629

[4] Herbener AB, Klincewicz M, Damholdt MF. Active ingredients in psychotherapy delivered by conversational agents: A narrative review. Comput Hum Behav Rep. 2024;14:100401. doi:10.1016/j.chbr.2024.100401 DOI: https://doi.org/10.1016/j.chbr.2024.100401

[5] Su P, Grydehøj A. Bordered and crossborder perspectives on sustainable development: Spatial planning in Hengqin, China. Cities. 2024;150:105014. doi:10.1016/j.cities.2024.105014 DOI: https://doi.org/10.1016/j.cities.2024.105014

[6] Thinh NK, Gao Y, Pitts A. Villages-in-the-city in China and Vietnam: Morphological transformation in Kunming and Hanoi. Cities. 2024;150:105051. doi:10.1016/j.cities.2024.105051 DOI: https://doi.org/10.1016/j.cities.2024.105051

[7] Ullah A, Sakidin H, Gul S, Shah K, Hamed Y, Abdeljawad T. Mathematical model with sensitivity analysis and control strategies for marijuana consumption. Partial Differ Equ Appl Math. 2024;10:100657. doi:10.1016/j.padiff.2024.100657 DOI: https://doi.org/10.1016/j.padiff.2024.100657

[8] Acuña EGA. University Didactic 4.0 for Professionals of the 21st Century. Rev Gestao - RGSA. 2024;18(8):e06190. doi:10.24857/rgsa.v18n8-006 DOI: https://doi.org/10.24857/rgsa.v18n8-006

[9] Benton TD. Suicide and suicidal behaviors among minoritized youth. Child Adolesc Psychiatr Clin N Am. 2022;31(2):211-21. doi:10.1016/j.chc.2022.01.002 DOI: https://doi.org/10.1016/j.chc.2022.01.002

[10] Boldrin DM, Tosatti LM, Previtali B, Demir AG. Seam tracking and gap bridging during robotic laser beam welding via grayscale imaging and wobbling. Rob Comput Integr Manuf. 2024;89:102774. doi:10.1016/j.rcim.2024.102774 DOI: https://doi.org/10.1016/j.rcim.2024.102774

[11] Bosun-Arije SF, Ekpenyong MS. Using the theory of symbolic interactionism to inform assessment processes in nurse education. Nurse Educ Pract. 2023;72:103781. doi:10.1016/j.nepr.2023.103781 DOI: https://doi.org/10.1016/j.nepr.2023.103781

[12] Cáceres CR, Sandberg M, Sotoca A. Planning data center locations in Swedish municipalities: A comparative case study of Luleå and Stockholm. Cities. 2024;150:105063. doi:10.1016/j.cities.2024.105063 DOI: https://doi.org/10.1016/j.cities.2024.105063

[13] Camacho R, Aryal J, Rajabifard A. Disaster-induced disruption of policies for informal urban settlements. Cities. 2024;150:105098. doi:10.1016/j.cities.2024.105098 DOI: https://doi.org/10.1016/j.cities.2024.105098

[14] Capponi M, Gervasi R, Mastrogiacomo L, Franceschini F. Assembly complexity and physiological response in human-robot collaboration: Insights from a preliminary experimental analysis. Rob Comput Integr Manuf. 2024;89:102789. doi:10.1016/j.rcim.2024.102789 DOI: https://doi.org/10.1016/j.rcim.2024.102789

[15] Centres PM, Perez-Morelo DJ, Guzman R, Reinaudi L, Gimenez MC. Diffusion model for the spread of infectious diseases: SIR model with mobile agents. Physica A. 2024;633:129399. doi:10.1016/j.physa.2023.129399 DOI: https://doi.org/10.1016/j.physa.2023.129399

[16] Chai Y, Sheline YI, Oathes DJ, Balderston NL, Rao H, Yu M. Functional connectomics in depression: insights into therapies. Trends Cogn Sci. 2023;27(9):814-32. doi:10.1016/j.tics.2023.05.006 DOI: https://doi.org/10.1016/j.tics.2023.05.006

[17] Chakraborty A, Hatsuda T, Ikeda Y. Dynamic relationship between the XRP price and correlation tensor spectra of transaction networks. Physica A. 2024;639:129686. doi:10.1016/j.physa.2024.129686 DOI: https://doi.org/10.1016/j.physa.2024.129686

[18] Chełminiak P. First-passage time statistics for non-linear diffusion. Physica A. 2024;633:129370. doi:10.1016/j.physa.2023.129370 DOI: https://doi.org/10.1016/j.physa.2023.129370

[19] Chen XJ, Zhao Y, Kang C, Xing X, Dong Q, Liu Y. Characterizing the temporally stable structure of community evolution in intra-urban origin-destination networks. Cities. 2024;150:105033. doi:10.1016/j.cities.2024.105033 DOI: https://doi.org/10.1016/j.cities.2024.105033

[20] Chen ZH, Xu ZD, Lu HF, Yu DY, Yang JZ, Pan B, et al. The contact force between lunar-based equipment and lunar soil. iScience. 2024;27(4):109322. doi:10.1016/j.isci.2024.109322 DOI: https://doi.org/10.1016/j.isci.2024.109322

[21] Egan SJ, Johnson C, Wade TD, Carlbring P, Raghav S, Shafran R. Perceptions and acceptability of AI guidance in internet CBT for perfectionism in young people: A pilot study. Internet Interv. 2024;35:100711. doi:10.1016/j.invent.2024.100711 DOI: https://doi.org/10.1016/j.invent.2024.100711

[22] Elragal A, Elgendy N. A data-driven decision-making readiness assessment model: The case of a Swedish food manufacturer. Decis Anal J. 2024;10:100405. doi:10.1016/j.dajour.2024.100405 DOI: https://doi.org/10.1016/j.dajour.2024.100405

[23] So R, Emura N, Okazaki K, Takeda S, Sunami T, Kitagawa K, et al. Guided vs unguided chatbot-delivered CBT for moderate-risk/problem gambling: GAMBOT2 RCT. Addict Behav. 2024;149:107889. doi:10.1016/j.addbeh.2023.107889 DOI: https://doi.org/10.1016/j.addbeh.2023.107889

[24] Sofiane K, Oubouskour K, Omar B. Mathematical modeling and optimal control strategies to limit fowl pox in poultry. Results Control Optim. 2024;15:100428. doi:10.1016/j.rico.2024.100428 DOI: https://doi.org/10.1016/j.rico.2024.100428

[25] Lafond-Brina G, Pham BT, Bonnefond A. Specific mechanisms underlying executive and emotional apathy: A phenotyping study. J Psychiatr Res. 2024;172:35-46. doi:10.1016/j.jpsychires.2024.02.022. DOI: https://doi.org/10.1016/j.jpsychires.2024.02.022

[26] Adverse childhood experiences differently affect Theory of Mind brain networks in schizophrenia and healthy controls. J Psychiatr Res. 2024;172:81-9. doi:10.1016/j.jpsychires.2024.02.034. DOI: https://doi.org/10.1016/j.jpsychires.2024.02.034

[27] Kim KM, Lee KH, Kim H, Kim O, Kim J-W. Symptom clusters in adolescent depression and differential responses of clusters to pharmacologic treatment. J Psychiatr Res. 2024;172:59-65. doi:10.1016/j.jpsychires.2024.02.001. DOI: https://doi.org/10.1016/j.jpsychires.2024.02.001

[28] Acuña Acuña EG. Análisis del impacto de las TIC en la educación superior en Latinoamérica. EDUTECH Rev Int Educ Technol Rev Rev Int Tecnol Educ. 2022;9(1):15-29. doi:10.37467/gkarevedutech.v9.3277 DOI: https://doi.org/10.37467/gkarevedutech.v9.3277

[29] Aláez D, Lopez-Iturri P, Celaya-Echarri M, Azpilicueta L, Falcone F, Villadangos J, Astrain JJ. Digital twin modeling of open category UAV radio communications: A case study. Comput Netw. 2024;242:110276. doi:10.1016/j.comnet.2024.110276 DOI: https://doi.org/10.1016/j.comnet.2024.110276

[30] Ali O, Aghmadi A, Mohammed OA. Performance evaluation of communication networks for networked microgrids. e-Prime Adv Electr Eng Electron Energy. 2024;8:100521. doi:10.1016/j.prime.2024.100521 DOI: https://doi.org/10.1016/j.prime.2024.100521

[31] Andersen PD, Silvast A. Experts, stakeholders, technocracy, and technoeconomic input into energy scenarios. Futures. 2023;154:103271. doi:10.1016/j.futures.2023.103271 DOI: https://doi.org/10.1016/j.futures.2023.103271

[32] Aoki T. Which generation should migration promotion measures target to shortly achieve a compact structure for shrinking cities? Cities. 2024;150:105020. doi:10.1016/j.cities.2024.105020 DOI: https://doi.org/10.1016/j.cities.2024.105020

[33] Balaskas A, Schueller SM, Doherty K, Cox AL, Doherty G. Designing personalized mental health interventions for anxiety: CBT therapists’ perspective. Int J Hum Comput Stud. 2024;190:103319. doi:10.1016/j.ijhcs.2024.103319 DOI: https://doi.org/10.1016/j.ijhcs.2024.103319

[34] Regina de Aguiar Dutra A, Kinley D, Pandey S, Prasath RA, Moro LD, Bernett D, et al. Business models for the bottom of the pyramid: Frugal innovation for cassava family farming. In: Sustainable Cassava. 2024. p.135-52. doi:10.1016/B978-0-443-21747-0.00015-1 DOI: https://doi.org/10.1016/B978-0-443-21747-0.00015-1

[35] Resick PA, LoSavio ST, Monson CM, Kaysen DL, Wachen JS, Galovski TE, et al. State of the science of cognitive processing therapy. Behav Ther. 2024. doi:10.1016/j.beth.2024.04.003 DOI: https://doi.org/10.1016/j.beth.2024.04.003

[36] Rivera E, Diaz C, Bianchini E. Orofacial myofunctional therapy in sleep respiratory disorders: Technology-based adherence strategies. Sleep Med. 2024;115(Suppl):S412-3. doi:10.1016/j.sleep.2023.11.1107 DOI: https://doi.org/10.1016/j.sleep.2023.11.1107

[37] Rivera E, Diaz C, Bianchini E. Telemedicine and AI in orofacial myofunctional therapy for obstructive sleep apnea: Effectiveness and satisfaction. Sleep Med. 2024;115:1121. doi:10.1016/j.sleep.2023.11.1121 DOI: https://doi.org/10.1016/j.sleep.2023.11.1121

[38] Wu Z, Li X, Huang Y, Huang K, Xiao B, Chi Y, et al. Effects of a nurse-led CBT intervention for parents of children with epilepsy. Pediatr Neurol. 2024;154:70-8. doi:10.1016/j.pediatrneurol.2024.03.003 DOI: https://doi.org/10.1016/j.pediatrneurol.2024.03.003

[39] Zaabi AA, Padela AI. AI and patient-centered care in the Gulf: Ethical challenges. In: Digital Healthcare in Asia and Gulf Region for Healthy Aging and Inclusive Societies. 2024. p.331-52. doi:10.1016/B978-0-443-23637-2.00022-9 DOI: https://doi.org/10.1016/B978-0-443-23637-2.00022-9

[40] Zeng Y, Liu X, Zhang X, Li Z. Retrospective of interdisciplinary research on robot services (1954–2023): From parasitism to symbiosis. Technol Soc. 2024;78:102636. doi:10.1016/j.techsoc.2024.102636 DOI: https://doi.org/10.1016/j.techsoc.2024.102636

[41] Zhai C, Wibowo S, Li LD. Evaluating AI dialogue systems in intercultural, humorous, and empathetic dimensions for English learning. Comput Educ Artif Intell. 2024;100262. doi:10.1016/j.caeai.2024.100262 DOI: https://doi.org/10.1016/j.caeai.2024.100262

[42] Zuo Z, Zhang H, Li Z, Ma L, Liang S, Liu T, et al. Self-supervised leak detection in natural gas pipelines with unlabeled multi-class non-leak data. Comput Ind. 2024;159-160:104102. doi:10.1016/j.compind.2024.104102 DOI: https://doi.org/10.1016/j.compind.2024.104102

[43] Acuña Acuña EG. Fortalecimiento de la integridad académica a través de la IA: estrategias de prevención del plagio en la era digital. Areté Rev Digit Dr Educ. 2024;10(especial):49-67. Epub 2025 Jan 31. doi:10.55560/arete.2024.ee.10.4

[44] Wynn JK, McCleery A, Novacek D, Reavis EA, Tsai J, Green MF. Clinical and functional effects of the COVID-19 pandemic and social distancing on vulnerable veterans with psychosis or recent homelessness. J Psychiatr Res. 2021 Jun;138:42-9. doi:10.1016/j.jpsychires.2021.03.051. PMID: 33819876. DOI: https://doi.org/10.1016/j.jpsychires.2021.03.051

[45] ASD and ADHD: Divergent activating patterns of prefrontal cortex in executive function tasks? J Psychiatr Res. 2024;172:187-96. doi:10.1016/j.jpsychires.2024.02.012. DOI: https://doi.org/10.1016/j.jpsychires.2024.02.012

[46] Van Roessel PJ, Grassi G, Aboujaoude EN, Menchón JM, Van Ameringen M, Rodríguez CI. Treatment-resistant OCD: Pharmacotherapies in adults. Compr Psychiatry. 2023;120:152352. doi:10.1016/j.comppsych.2022.152352. DOI: https://doi.org/10.1016/j.comppsych.2022.152352

[47] Acuña Acuña EG. Integrative model of theory and practice for engineering and management education in Latin America. Cad Educ Tecnol Soc. 2025;18(1):211-31. doi:10.14571/brajets.v18.n1.211-231 DOI: https://doi.org/10.14571/brajets.v18.n1.211-231

[48] Furman BW, Craighead WE, Mayberg HS, Mletzko T, Nemeroff CB, Dunlop BW. Utility of measuring daily hassles and uplifts for outcomes in major depressive disorder treatments. Psychiatry Res. 2024;335:115859.doi:10.1016/j.psychres.2024.115859 DOI: https://doi.org/10.1016/j.psychres.2024.115859

[49] Gao M, Ge R. Mapping time series into signed networks via horizontal visibility graph. Physica A. 2024;633:129404. doi:10.1016/j.physa.2023.129404 DOI: https://doi.org/10.1016/j.physa.2023.129404

[50] Garza-Ulloa J. Cognitive learning and reasoning models applied to biomedical engineering. In: Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models. 2022. p.609-76. doi:10.1016/B978-0-12-820718-5.00005-2 DOI: https://doi.org/10.1016/B978-0-12-820718-5.00005-2

[51] Differential associations of adverse childhood experiences and mental health outcomes in U.S. military veterans. J Psychiatr Res. 2024;172:261-5. doi:10.1016/j.jpsychires.2024.02.040. DOI: https://doi.org/10.1016/j.jpsychires.2024.02.040

[52] Associations between somatic symptoms and remission of major depressive disorder: A longitudinal study in China. J Psychiatr Res. 2024;172:382-90. doi:10.1016/j.jpsychires.2024.02.056. DOI: https://doi.org/10.1016/j.jpsychires.2024.02.056

[53] Longitudinal associations between loneliness and self-rated health among Black and White older adults. J Gerontol B Psychol Sci Soc Sci. 2022;78(4):639-48. doi:10.1093/geronb/gbac200. DOI: https://doi.org/10.1093/geronb/gbac200

[54] Herbener AB, Klincewicz M, Damholdt MF. Clinical and neuroimaging predictors of benzodiazepine response in catatonia: A machine learning approach. J Psychiatr Res. 2024;172:300-6. doi:10.1016/j.jpsychires.2024.02.039. DOI: https://doi.org/10.1016/j.jpsychires.2024.02.039

[55] Acuña EGA, Ferruzca AA, Rojas JMC, Bayona MFG, Soto JSP, Rojo Rojo CN. Optimization of urban mobility with IoT and Big Data: technology for the information and knowledge society in Industry 5.0. In: Nesmachnow S, Hernández Callejo L, editors. Smart Cities. ICSC-CITIES 2024. Communications in Computer and Information Science. Vol. 2394. Cham: Springer; 2025. doi:10.1007/978-3-031-85324-1_4 DOI: https://doi.org/10.1007/978-3-031-85324-1_4

[56] Examining racial differences in community integration between Black and White homeless veterans. Psychiatry Res. 2022;307:114385. doi:10.1016/j.psychres.2021.114385. DOI: https://doi.org/10.1016/j.psychres.2021.114385

[57] Sedative drug prescription patterns in Danish adults from 2002 through 2021: A register-based cohort study. J Psychiatr Res. 2024;172:129-35. doi:10.1016/j.jpsychires.2023.12.040. [58] Gates V, Hsiao M, Zieve GG, Courry R, Persons JB. Case formulation, treatment goals, and symptom plots: Relationship to CBT outcome and dropout. Behav Res Ther. 2021;142:103874. doi:10.1016/j.brat.2021.103874 DOI: https://doi.org/10.1016/j.brat.2021.103874

[59] Gebhardt S, Nasrallah HA. Role of the insula in cognitive impairment of schizophrenia. Schizophr Res Cogn. 2023;32:100277. doi:10.1016/j.scog.2022.100277 DOI: https://doi.org/10.1016/j.scog.2022.100277

[60] Johann AF, Feige B, Hertenstein E, Nissen C, Benz F, Steinmetz L, et al. Effects of CBT for insomnia on multidimensional perfectionism. Behav Ther. 2023;54(2):386-99. doi:10.1016/j.beth.2022.10.001 DOI: https://doi.org/10.1016/j.beth.2022.10.001

[61] K.M V, Tummala V, Sangaraju YSV, Reddy MSV, Kumar P, Mayya V, et al. FFA-Lens: Lesion detection tool for chronic ocular diseases in fluorescein angiography images. SoftwareX. 2024;26:101646. doi:10.1016/j.softx.2024.101646 DOI: https://doi.org/10.1016/j.softx.2024.101646

[62] Lappalainen P, Keinonen K, Lappalainen R, Selinheimo S, Vuokko A, Sainio M, et al. Online acceptance and commitment therapy (iACT) for adults with persistent physical symptoms: 3-month follow-up RCT. J Psychosom Res. 2024;183:111830. doi:10.1016/j.jpsychores.2024.111830 DOI: https://doi.org/10.1016/j.jpsychores.2024.111830

[63] Lazris D, Schenker Y, Thomas TH. AI-generated content in cancer symptom management: ChatGPT vs NCCN. J Pain Symptom Manage. 2024. doi:10.1016/j.jpainsymman.2024.06.019 DOI: https://doi.org/10.1016/j.jpainsymman.2024.06.019

[64] Acuña Acuña EG. Empresas autónomas: toma de decisiones estratégicas impulsada por inteligencia artificial en la administración empresarial. Rev Académ Inst. 2025;7(2):1-18. doi:10.64183/pw7nw416 DOI: https://doi.org/10.64183/pw7nw416

[65] Negi R. Improving women’s mental health through AI-powered interventions and diagnoses. In: Artificial Intelligence and Machine Learning for Women’s Health Issues. 2024. p.173-91. doi:10.1016/B978-0-443-21889-7.00017-8 DOI: https://doi.org/10.1016/B978-0-443-21889-7.00017-8

[66] Novacek DM, Wynn JK, McCleery A, Reavis EA, Senturk D, Sugar CA, et al. Sustained mental health and functional responses to COVID-19 in Black and White veterans with psychosis or recent homelessness. J Psychiatr Res. 2024;172:102-7. doi:10.1016/j.jpsychires.2024.02.037 DOI: https://doi.org/10.1016/j.jpsychires.2024.02.037

[67] Olaniyan OT, Adetunji CO, Dare A, Adeyomoye O, Adeniyi MJ, Enoch A. Cognitive therapy for brain diseases using AI models. In: Artificial Intelligence for Neurological Disorders. 2023. p.185-207. doi:10.1016/B978-0-323-90277-9.00013-4 DOI: https://doi.org/10.1016/B978-0-323-90277-9.00013-4

[68] Özbilgin F, Kurnaz Ç, Aydın E. Non-invasive coronary artery disease identification via iris and health profile features using stacking learning. Image Vis Comput. 2024;146:105046. doi:10.1016/j.imavis.2024.105046 DOI: https://doi.org/10.1016/j.imavis.2024.105046

[69] Park M, Alves PBR, Whiteheart RM, Hendricks MD. Socially vulnerable people and stormwater infrastructure: Distribution of gray and green infrastructure in Washington D.C. Cities. 2024;150:105010. doi:10.1016/j.cities.2024.105010 DOI: https://doi.org/10.1016/j.cities.2024.105010

[70] Pinochet LHC, de Gois FS, Pardim VI, Onusic LM. Effect of adopting humanized vs non-humanized chatbots on perceived trust in the Yellow September campaign. Technol Forecast Soc Change. 2024;204:123414. doi:10.1016/j.techfore.2024.123414 DOI: https://doi.org/10.1016/j.techfore.2024.123414

[71] Pistolesi F, Baldassini M, Lazzerini B. Human-centric system combining smartwatch and LiDAR data to assess risk of musculoskeletal disorders in Industry 5.0. Comput Ind. 2024;155:104042. doi:10.1016/j.compind.2023.104042 DOI: https://doi.org/10.1016/j.compind.2023.104042

[72] R P, S S, S K. Resilience-based integrated process system hazard analysis (RIPSHA): Application to a chemical storage area in an edible oil refinery. Process Saf Environ Prot. 2020;141:246-58. doi:10.1016/j.psep.2020.05.028 DOI: https://doi.org/10.1016/j.psep.2020.05.028

[73] Sadeghi RK, Ojha D, Kaur P, Mahto RV, Dhir A. Explainable AI and agile decision-making in supply chain cyber resilience. Decis Support Syst. 2024;180:114194. doi:10.1016/j.dss.2024.114194 DOI: https://doi.org/10.1016/j.dss.2024.114194

[74] Acuña Acuña EG, Cruz Doriano S, Álvarez Salgado FÁ. Modelado cognitivo mejorado cuánticamente para la optimización avanzada de rutas logísticas. Investig Aplica Tecnol Dig. 2025;4(1):61-84. doi:10.54963/dtra.v4i1.1075 DOI: https://doi.org/10.54963/dtra.v4i1.1075

[75] Luukkonen AL, Kuivila H, Kaarlela V, Koskenranta M, Kaucic BM, Riklikiene O, et al. Mentors' cultural competence in mentoring diverse nursing students: Cross-sectional international study. Nurse Educ Pract. 2023;70:103658. doi:10.1016/j.nepr.2023.103658 DOI: https://doi.org/10.1016/j.nepr.2023.103658

[76] Molla B, Molla EM, Yimam AW, Azerefegn TM. Mitigation of Ethiopian industry sector power quality problems using ultra-capacitor based DVR. e-Prime Adv Electr Eng Electron Energy. 2024;8:100612. doi:10.1016/j.prime.2024.100612 DOI: https://doi.org/10.1016/j.prime.2024.100612

[77] Montag C, Ali R, Al-Thani D, Hall BJ. On artificial intelligence and global mental health. Asian J Psychiatr. 2024;91:103855. doi:10.1016/j.ajp.2023.103855 DOI: https://doi.org/10.1016/j.ajp.2023.103855

[78] Moshrefi F, Farrokhi AM, Fattahi M, Azizbeigi R, Haghparast A. Role of orexin receptors in the CA1 area in methamphetamine place preference. J Psychiatr Res. 2024;172:291-9. doi:10.1016/j.jpsychires.2024.02.051 DOI: https://doi.org/10.1016/j.jpsychires.2024.02.051

[79] Muroi Y, Ishii T. Glutamatergic neurons from the medial prefrontal cortex to the dorsal raphe nucleus regulate maternal aggression in lactating mice. Neurosci Res. 2022;183:50-60. doi:10.1016/j.neures.2022.07.001 DOI: https://doi.org/10.1016/j.neures.2022.07.001

[80] Palmer Kelly E, Rush LJ, Eramo JL, Melnyk HL, Tarver WL, Waterman BL, et al. Gaps in patient-centered decision-making in complex surgery: A mixed-methods study. J Surg Res. 2024;295:740-5. doi:10.1016/j.jss.2023.11.070 DOI: https://doi.org/10.1016/j.jss.2023.11.070

[81] Samadi M, Mirnezami SR, Torabi Khargh M. Organizational capabilities and international performance of knowledge-based firms. J Open Innov Technol Mark Complex. 2023;9(4):100163. doi:10.1016/j.joitmc.2023.100163 DOI: https://doi.org/10.1016/j.joitmc.2023.100163

[82] Van Doren N, Ng H, Rawat E, McKenna KR, Blonigen DM. Virtual reality mindfulness training for veterans in substance use treatment: Feasibility and acceptability. J Subst Use Addict Treat. 2024;161:209315. doi:10.1016/j.josat.2024.209315 DOI: https://doi.org/10.1016/j.josat.2024.209315

[83] Vancappel A, Courtois R, Reveillere C, El-Hage W. Mediation and moderation of positivity, cognitive fusion, brooding and mindfulness. Encephale. 2023;49(3):227-33. doi:10.1016/j.encep.2021.12.003 DOI: https://doi.org/10.1016/j.encep.2021.12.003

[84] Wang Q, Zhang W, An S. Internet-based self-help interventions for adolescent and college mental health: Systematic review and meta-analysis. Internet Interv. 2023;34:100690. doi:10.1016/j.invent.2023.100690 DOI: https://doi.org/10.1016/j.invent.2023.100690

[85] Wang T, Liu Z, Wang L, Li M, Wang XV. Data-efficient multimodal human action recognition for proactive HRC assembly: Few-shot cross-domain learning. Rob Comput Integr Manuf. 2024;89:102785. doi:10.1016/j.rcim.2024.102785 DOI: https://doi.org/10.1016/j.rcim.2024.102785

[86] Wang Z, Xu Z, Wang X, Xie M. Temporal-spatial cleaning optimization for photovoltaic power plants. Sustain Energy Technol Assess. 2022;49:101691. doi:10.1016/j.seta.2021.101691 DOI: https://doi.org/10.1016/j.seta.2021.101691

[87] Webb J. Managing child and adolescent depression. In: Reference Module in Neuroscience and Biobehavioral Psychology. 2023. doi:10.1016/B978-0-323-95702-1.00018-X DOI: https://doi.org/10.1016/B978-0-323-95702-1.00018-X

[88] Woo J, Shidara K, Achard C, Tanaka H, Nakamura S, Pelachaud C. Adaptive virtual agent: Design and evaluation for real-time human–agent interaction. Int J Hum Comput Stud. 2024;190:103321. doi:10.1016/j.ijhcs.2024.103321 DOI: https://doi.org/10.1016/j.ijhcs.2024.103321

[89] Acuña Acuña EG. Fortalecimiento de la integridad académica a través de la IA: estrategias de prevención del plagio en la era digital. Areté Rev Digit Dr Educ. 2024;10(ee):49-67. Disponible en: https://saber.ucv.ve/ojs/index.php/rev_arete/article/view/29452 DOI: https://doi.org/10.55560/arete.2024.ee.10.4

Downloads

Published

29-09-2025

How to Cite

[1]
J. Morgan Asch and E. G. Acuña Acuña, “Al-Driven Qualitative Research in Smart Cities: Enhancing Emotional Resilience in Youth and Children”, EAI Endorsed Trans Int Sys Mach Lear App, vol. 2, Sep. 2025.