Al-Driven Qualitative Research in Smart Cities: Enhancing Emotional Resilience in Youth and Children
DOI:
https://doi.org/10.4108/eetismla.9497Keywords:
artificial intelligence, emotional resilience, youth, children, smart cities.Abstract
INTRODUCTION: Industry 5.0 has brought advanced AI-driven technologies into qualitative research and data analysis, particularly in systems that are very important to the purpose. This research examines the use of AI algorithms to evaluate emotional resilience in kids and children in smart cities. The study underscores Al's role in qualitative research to substantiate the efficacy of these algorithms in assessing emotional resilience and advocating for interventions that improve emotional well-being. The main goal of this research is to see how accurate and reliable AI algorithms are when they measure emotional resilience. The goal of the project is to leverage these technologies to make treatments that make kids and teens in smart cities feel better emotionally, which will help them grow up in a caring environment.
METHODOLOGY: A quantitative, descriptive, and exploratory methodology is used, using data gathered from children to examine emotional reactions via deep neural network models. These models are designed to find levels of resilience with amazing accuracy, sensitivity, and specificity, with the goal of getting accuracy rates above eighty percent.
RESULTS: The results indicate that AI-driven technology may provide comprehensive qualitative insights into the emotional resilience of adolescents and children. The research underscores the capacity of these technologies to provide personalized treatments and assistance, hence improving emotional well-being in smart city contexts. The findings indicate that AI might enhance emotional resilience, facilitate early detection of emotional problems, and enable prompt assistance. The suggested model was able to find emotional resilience with 94% accuracy, 92% sensitivity, 88% specificity, and 95% AUC. These results demonstrate the efficacy of AI-driven approaches in the early detection of emotional problems among adolescents and teenagers inside smart city environments. The research shows that AI technologies are very important for figuring out how to help kids and teens become more emotionally strong. It backs the employment of these technologies in the public health and education systems of smart cities to help kids develop emotionally. This plan makes it simpler to get in early and helps create a strong, supportive community.
Downloads
References
[1] Girelli F, Rossetti MG, Perlini C, Bellani M. Neural correlates of CBT-based interventions for bipolar disorder: A scoping review. J Psychiatr Res. 2024;172:351-9. doi:10.1016/j.jpsychires.2024.02.054
[2] Goldsmith ES, Miller WA, Koffel E, Ullman K, Landsteiner A, Stroebel B, et al. Barriers and facilitators of evidence-based psychotherapies for chronic pain in adults: A systematic review. J Pain. 2023;24(5):742-69. doi:10.1016/j.jpain.2023.02.026
[3] Hagberg T, Manhem P, Oscarsson M, Michel F, Andersson G, Carlbring P. Efficacy of transdiagnostic cognitive-behavioral therapy for assertiveness: A randomized controlled trial. Internet Interv. 2023;32:100629. doi:10.1016/j.invent.2023.100629
[4] Herbener AB, Klincewicz M, Damholdt MF. Active ingredients in psychotherapy delivered by conversational agents: A narrative review. Comput Hum Behav Rep. 2024;14:100401. doi:10.1016/j.chbr.2024.100401
[5] Su P, Grydehøj A. Bordered and crossborder perspectives on sustainable development: Spatial planning in Hengqin, China. Cities. 2024;150:105014. doi:10.1016/j.cities.2024.105014
[6] Thinh NK, Gao Y, Pitts A. Villages-in-the-city in China and Vietnam: Morphological transformation in Kunming and Hanoi. Cities. 2024;150:105051. doi:10.1016/j.cities.2024.105051
[7] Ullah A, Sakidin H, Gul S, Shah K, Hamed Y, Abdeljawad T. Mathematical model with sensitivity analysis and control strategies for marijuana consumption. Partial Differ Equ Appl Math. 2024;10:100657. doi:10.1016/j.padiff.2024.100657
[8] Acuña EGA. University Didactic 4.0 for Professionals of the 21st Century. Rev Gestao - RGSA. 2024;18(8):e06190. doi:10.24857/rgsa.v18n8-006
[9] Benton TD. Suicide and suicidal behaviors among minoritized youth. Child Adolesc Psychiatr Clin N Am. 2022;31(2):211-21. doi:10.1016/j.chc.2022.01.002
[10] Boldrin DM, Tosatti LM, Previtali B, Demir AG. Seam tracking and gap bridging during robotic laser beam welding via grayscale imaging and wobbling. Rob Comput Integr Manuf. 2024;89:102774. doi:10.1016/j.rcim.2024.102774
[11] Bosun-Arije SF, Ekpenyong MS. Using the theory of symbolic interactionism to inform assessment processes in nurse education. Nurse Educ Pract. 2023;72:103781. doi:10.1016/j.nepr.2023.103781
[12] Cáceres CR, Sandberg M, Sotoca A. Planning data center locations in Swedish municipalities: A comparative case study of Luleå and Stockholm. Cities. 2024;150:105063. doi:10.1016/j.cities.2024.105063
[13] Camacho R, Aryal J, Rajabifard A. Disaster-induced disruption of policies for informal urban settlements. Cities. 2024;150:105098. doi:10.1016/j.cities.2024.105098
[14] Capponi M, Gervasi R, Mastrogiacomo L, Franceschini F. Assembly complexity and physiological response in human-robot collaboration: Insights from a preliminary experimental analysis. Rob Comput Integr Manuf. 2024;89:102789. doi:10.1016/j.rcim.2024.102789
[15] Centres PM, Perez-Morelo DJ, Guzman R, Reinaudi L, Gimenez MC. Diffusion model for the spread of infectious diseases: SIR model with mobile agents. Physica A. 2024;633:129399. doi:10.1016/j.physa.2023.129399
[16] Chai Y, Sheline YI, Oathes DJ, Balderston NL, Rao H, Yu M. Functional connectomics in depression: insights into therapies. Trends Cogn Sci. 2023;27(9):814-32. doi:10.1016/j.tics.2023.05.006
[17] Chakraborty A, Hatsuda T, Ikeda Y. Dynamic relationship between the XRP price and correlation tensor spectra of transaction networks. Physica A. 2024;639:129686. doi:10.1016/j.physa.2024.129686
[18] Chełminiak P. First-passage time statistics for non-linear diffusion. Physica A. 2024;633:129370. doi:10.1016/j.physa.2023.129370
[19] Chen XJ, Zhao Y, Kang C, Xing X, Dong Q, Liu Y. Characterizing the temporally stable structure of community evolution in intra-urban origin-destination networks. Cities. 2024;150:105033. doi:10.1016/j.cities.2024.105033
[20] Chen ZH, Xu ZD, Lu HF, Yu DY, Yang JZ, Pan B, et al. The contact force between lunar-based equipment and lunar soil. iScience. 2024;27(4):109322. doi:10.1016/j.isci.2024.109322
[21] Egan SJ, Johnson C, Wade TD, Carlbring P, Raghav S, Shafran R. Perceptions and acceptability of AI guidance in internet CBT for perfectionism in young people: A pilot study. Internet Interv. 2024;35:100711. doi:10.1016/j.invent.2024.100711
[22] Elragal A, Elgendy N. A data-driven decision-making readiness assessment model: The case of a Swedish food manufacturer. Decis Anal J. 2024;10:100405. doi:10.1016/j.dajour.2024.100405
[23] So R, Emura N, Okazaki K, Takeda S, Sunami T, Kitagawa K, et al. Guided vs unguided chatbot-delivered CBT for moderate-risk/problem gambling: GAMBOT2 RCT. Addict Behav. 2024;149:107889. doi:10.1016/j.addbeh.2023.107889
[24] Sofiane K, Oubouskour K, Omar B. Mathematical modeling and optimal control strategies to limit fowl pox in poultry. Results Control Optim. 2024;15:100428. doi:10.1016/j.rico.2024.100428
[25] Lafond-Brina G, Pham BT, Bonnefond A. Specific mechanisms underlying executive and emotional apathy: A phenotyping study. J Psychiatr Res. 2024;172:35-46. doi:10.1016/j.jpsychires.2024.02.022.
[26] Adverse childhood experiences differently affect Theory of Mind brain networks in schizophrenia and healthy controls. J Psychiatr Res. 2024;172:81-9. doi:10.1016/j.jpsychires.2024.02.034.
[27] Kim KM, Lee KH, Kim H, Kim O, Kim J-W. Symptom clusters in adolescent depression and differential responses of clusters to pharmacologic treatment. J Psychiatr Res. 2024;172:59-65. doi:10.1016/j.jpsychires.2024.02.001.
[28] Acuña Acuña EG. Análisis del impacto de las TIC en la educación superior en Latinoamérica. EDUTECH Rev Int Educ Technol Rev Rev Int Tecnol Educ. 2022;9(1):15-29. doi:10.37467/gkarevedutech.v9.3277
[29] Aláez D, Lopez-Iturri P, Celaya-Echarri M, Azpilicueta L, Falcone F, Villadangos J, Astrain JJ. Digital twin modeling of open category UAV radio communications: A case study. Comput Netw. 2024;242:110276. doi:10.1016/j.comnet.2024.110276
[30] Ali O, Aghmadi A, Mohammed OA. Performance evaluation of communication networks for networked microgrids. e-Prime Adv Electr Eng Electron Energy. 2024;8:100521. doi:10.1016/j.prime.2024.100521
[31] Andersen PD, Silvast A. Experts, stakeholders, technocracy, and technoeconomic input into energy scenarios. Futures. 2023;154:103271. doi:10.1016/j.futures.2023.103271
[32] Aoki T. Which generation should migration promotion measures target to shortly achieve a compact structure for shrinking cities? Cities. 2024;150:105020. doi:10.1016/j.cities.2024.105020
[33] Balaskas A, Schueller SM, Doherty K, Cox AL, Doherty G. Designing personalized mental health interventions for anxiety: CBT therapists’ perspective. Int J Hum Comput Stud. 2024;190:103319. doi:10.1016/j.ijhcs.2024.103319
[34] Regina de Aguiar Dutra A, Kinley D, Pandey S, Prasath RA, Moro LD, Bernett D, et al. Business models for the bottom of the pyramid: Frugal innovation for cassava family farming. In: Sustainable Cassava. 2024. p.135-52. doi:10.1016/B978-0-443-21747-0.00015-1
[35] Resick PA, LoSavio ST, Monson CM, Kaysen DL, Wachen JS, Galovski TE, et al. State of the science of cognitive processing therapy. Behav Ther. 2024. doi:10.1016/j.beth.2024.04.003
[36] Rivera E, Diaz C, Bianchini E. Orofacial myofunctional therapy in sleep respiratory disorders: Technology-based adherence strategies. Sleep Med. 2024;115(Suppl):S412-3. doi:10.1016/j.sleep.2023.11.1107
[37] Rivera E, Diaz C, Bianchini E. Telemedicine and AI in orofacial myofunctional therapy for obstructive sleep apnea: Effectiveness and satisfaction. Sleep Med. 2024;115:1121. doi:10.1016/j.sleep.2023.11.1121
[38] Wu Z, Li X, Huang Y, Huang K, Xiao B, Chi Y, et al. Effects of a nurse-led CBT intervention for parents of children with epilepsy. Pediatr Neurol. 2024;154:70-8. doi:10.1016/j.pediatrneurol.2024.03.003
[39] Zaabi AA, Padela AI. AI and patient-centered care in the Gulf: Ethical challenges. In: Digital Healthcare in Asia and Gulf Region for Healthy Aging and Inclusive Societies. 2024. p.331-52. doi:10.1016/B978-0-443-23637-2.00022-9
[40] Zeng Y, Liu X, Zhang X, Li Z. Retrospective of interdisciplinary research on robot services (1954–2023): From parasitism to symbiosis. Technol Soc. 2024;78:102636. doi:10.1016/j.techsoc.2024.102636
[41] Zhai C, Wibowo S, Li LD. Evaluating AI dialogue systems in intercultural, humorous, and empathetic dimensions for English learning. Comput Educ Artif Intell. 2024;100262. doi:10.1016/j.caeai.2024.100262
[42] Zuo Z, Zhang H, Li Z, Ma L, Liang S, Liu T, et al. Self-supervised leak detection in natural gas pipelines with unlabeled multi-class non-leak data. Comput Ind. 2024;159-160:104102. doi:10.1016/j.compind.2024.104102
[43] Acuña Acuña EG. Fortalecimiento de la integridad académica a través de la IA: estrategias de prevención del plagio en la era digital. Areté Rev Digit Dr Educ. 2024;10(especial):49-67. Epub 2025 Jan 31. doi:10.55560/arete.2024.ee.10.4
[44] Wynn JK, McCleery A, Novacek D, Reavis EA, Tsai J, Green MF. Clinical and functional effects of the COVID-19 pandemic and social distancing on vulnerable veterans with psychosis or recent homelessness. J Psychiatr Res. 2021 Jun;138:42-9. doi:10.1016/j.jpsychires.2021.03.051. PMID: 33819876.
[45] ASD and ADHD: Divergent activating patterns of prefrontal cortex in executive function tasks? J Psychiatr Res. 2024;172:187-96. doi:10.1016/j.jpsychires.2024.02.012.
[46] Van Roessel PJ, Grassi G, Aboujaoude EN, Menchón JM, Van Ameringen M, Rodríguez CI. Treatment-resistant OCD: Pharmacotherapies in adults. Compr Psychiatry. 2023;120:152352. doi:10.1016/j.comppsych.2022.152352.
[47] Acuña Acuña EG. Integrative model of theory and practice for engineering and management education in Latin America. Cad Educ Tecnol Soc. 2025;18(1):211-31. doi:10.14571/brajets.v18.n1.211-231
[48] Furman BW, Craighead WE, Mayberg HS, Mletzko T, Nemeroff CB, Dunlop BW. Utility of measuring daily hassles and uplifts for outcomes in major depressive disorder treatments. Psychiatry Res. 2024;335:115859.doi:10.1016/j.psychres.2024.115859
[49] Gao M, Ge R. Mapping time series into signed networks via horizontal visibility graph. Physica A. 2024;633:129404. doi:10.1016/j.physa.2023.129404
[50] Garza-Ulloa J. Cognitive learning and reasoning models applied to biomedical engineering. In: Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models. 2022. p.609-76. doi:10.1016/B978-0-12-820718-5.00005-2
[51] Differential associations of adverse childhood experiences and mental health outcomes in U.S. military veterans. J Psychiatr Res. 2024;172:261-5. doi:10.1016/j.jpsychires.2024.02.040.
[52] Associations between somatic symptoms and remission of major depressive disorder: A longitudinal study in China. J Psychiatr Res. 2024;172:382-90. doi:10.1016/j.jpsychires.2024.02.056.
[53] Longitudinal associations between loneliness and self-rated health among Black and White older adults. J Gerontol B Psychol Sci Soc Sci. 2022;78(4):639-48. doi:10.1093/geronb/gbac200.
[54] Herbener AB, Klincewicz M, Damholdt MF. Clinical and neuroimaging predictors of benzodiazepine response in catatonia: A machine learning approach. J Psychiatr Res. 2024;172:300-6. doi:10.1016/j.jpsychires.2024.02.039.
[55] Acuña EGA, Ferruzca AA, Rojas JMC, Bayona MFG, Soto JSP, Rojo Rojo CN. Optimization of urban mobility with IoT and Big Data: technology for the information and knowledge society in Industry 5.0. In: Nesmachnow S, Hernández Callejo L, editors. Smart Cities. ICSC-CITIES 2024. Communications in Computer and Information Science. Vol. 2394. Cham: Springer; 2025. doi:10.1007/978-3-031-85324-1_4
[56] Examining racial differences in community integration between Black and White homeless veterans. Psychiatry Res. 2022;307:114385. doi:10.1016/j.psychres.2021.114385.
[57] Sedative drug prescription patterns in Danish adults from 2002 through 2021: A register-based cohort study. J Psychiatr Res. 2024;172:129-35. doi:10.1016/j.jpsychires.2023.12.040. [58] Gates V, Hsiao M, Zieve GG, Courry R, Persons JB. Case formulation, treatment goals, and symptom plots: Relationship to CBT outcome and dropout. Behav Res Ther. 2021;142:103874. doi:10.1016/j.brat.2021.103874
[59] Gebhardt S, Nasrallah HA. Role of the insula in cognitive impairment of schizophrenia. Schizophr Res Cogn. 2023;32:100277. doi:10.1016/j.scog.2022.100277
[60] Johann AF, Feige B, Hertenstein E, Nissen C, Benz F, Steinmetz L, et al. Effects of CBT for insomnia on multidimensional perfectionism. Behav Ther. 2023;54(2):386-99. doi:10.1016/j.beth.2022.10.001
[61] K.M V, Tummala V, Sangaraju YSV, Reddy MSV, Kumar P, Mayya V, et al. FFA-Lens: Lesion detection tool for chronic ocular diseases in fluorescein angiography images. SoftwareX. 2024;26:101646. doi:10.1016/j.softx.2024.101646
[62] Lappalainen P, Keinonen K, Lappalainen R, Selinheimo S, Vuokko A, Sainio M, et al. Online acceptance and commitment therapy (iACT) for adults with persistent physical symptoms: 3-month follow-up RCT. J Psychosom Res. 2024;183:111830. doi:10.1016/j.jpsychores.2024.111830
[63] Lazris D, Schenker Y, Thomas TH. AI-generated content in cancer symptom management: ChatGPT vs NCCN. J Pain Symptom Manage. 2024. doi:10.1016/j.jpainsymman.2024.06.019
[64] Acuña Acuña EG. Empresas autónomas: toma de decisiones estratégicas impulsada por inteligencia artificial en la administración empresarial. Rev Académ Inst. 2025;7(2):1-18. doi:10.64183/pw7nw416
[65] Negi R. Improving women’s mental health through AI-powered interventions and diagnoses. In: Artificial Intelligence and Machine Learning for Women’s Health Issues. 2024. p.173-91. doi:10.1016/B978-0-443-21889-7.00017-8
[66] Novacek DM, Wynn JK, McCleery A, Reavis EA, Senturk D, Sugar CA, et al. Sustained mental health and functional responses to COVID-19 in Black and White veterans with psychosis or recent homelessness. J Psychiatr Res. 2024;172:102-7. doi:10.1016/j.jpsychires.2024.02.037
[67] Olaniyan OT, Adetunji CO, Dare A, Adeyomoye O, Adeniyi MJ, Enoch A. Cognitive therapy for brain diseases using AI models. In: Artificial Intelligence for Neurological Disorders. 2023. p.185-207. doi:10.1016/B978-0-323-90277-9.00013-4
[68] Özbilgin F, Kurnaz Ç, Aydın E. Non-invasive coronary artery disease identification via iris and health profile features using stacking learning. Image Vis Comput. 2024;146:105046. doi:10.1016/j.imavis.2024.105046
[69] Park M, Alves PBR, Whiteheart RM, Hendricks MD. Socially vulnerable people and stormwater infrastructure: Distribution of gray and green infrastructure in Washington D.C. Cities. 2024;150:105010. doi:10.1016/j.cities.2024.105010
[70] Pinochet LHC, de Gois FS, Pardim VI, Onusic LM. Effect of adopting humanized vs non-humanized chatbots on perceived trust in the Yellow September campaign. Technol Forecast Soc Change. 2024;204:123414. doi:10.1016/j.techfore.2024.123414
[71] Pistolesi F, Baldassini M, Lazzerini B. Human-centric system combining smartwatch and LiDAR data to assess risk of musculoskeletal disorders in Industry 5.0. Comput Ind. 2024;155:104042. doi:10.1016/j.compind.2023.104042
[72] R P, S S, S K. Resilience-based integrated process system hazard analysis (RIPSHA): Application to a chemical storage area in an edible oil refinery. Process Saf Environ Prot. 2020;141:246-58. doi:10.1016/j.psep.2020.05.028
[73] Sadeghi RK, Ojha D, Kaur P, Mahto RV, Dhir A. Explainable AI and agile decision-making in supply chain cyber resilience. Decis Support Syst. 2024;180:114194. doi:10.1016/j.dss.2024.114194
[74] Acuña Acuña EG, Cruz Doriano S, Álvarez Salgado FÁ. Modelado cognitivo mejorado cuánticamente para la optimización avanzada de rutas logísticas. Investig Aplica Tecnol Dig. 2025;4(1):61-84. doi:10.54963/dtra.v4i1.1075
[75] Luukkonen AL, Kuivila H, Kaarlela V, Koskenranta M, Kaucic BM, Riklikiene O, et al. Mentors' cultural competence in mentoring diverse nursing students: Cross-sectional international study. Nurse Educ Pract. 2023;70:103658. doi:10.1016/j.nepr.2023.103658
[76] Molla B, Molla EM, Yimam AW, Azerefegn TM. Mitigation of Ethiopian industry sector power quality problems using ultra-capacitor based DVR. e-Prime Adv Electr Eng Electron Energy. 2024;8:100612. doi:10.1016/j.prime.2024.100612
[77] Montag C, Ali R, Al-Thani D, Hall BJ. On artificial intelligence and global mental health. Asian J Psychiatr. 2024;91:103855. doi:10.1016/j.ajp.2023.103855
[78] Moshrefi F, Farrokhi AM, Fattahi M, Azizbeigi R, Haghparast A. Role of orexin receptors in the CA1 area in methamphetamine place preference. J Psychiatr Res. 2024;172:291-9. doi:10.1016/j.jpsychires.2024.02.051
[79] Muroi Y, Ishii T. Glutamatergic neurons from the medial prefrontal cortex to the dorsal raphe nucleus regulate maternal aggression in lactating mice. Neurosci Res. 2022;183:50-60. doi:10.1016/j.neures.2022.07.001
[80] Palmer Kelly E, Rush LJ, Eramo JL, Melnyk HL, Tarver WL, Waterman BL, et al. Gaps in patient-centered decision-making in complex surgery: A mixed-methods study. J Surg Res. 2024;295:740-5. doi:10.1016/j.jss.2023.11.070
[81] Samadi M, Mirnezami SR, Torabi Khargh M. Organizational capabilities and international performance of knowledge-based firms. J Open Innov Technol Mark Complex. 2023;9(4):100163. doi:10.1016/j.joitmc.2023.100163
[82] Van Doren N, Ng H, Rawat E, McKenna KR, Blonigen DM. Virtual reality mindfulness training for veterans in substance use treatment: Feasibility and acceptability. J Subst Use Addict Treat. 2024;161:209315. doi:10.1016/j.josat.2024.209315
[83] Vancappel A, Courtois R, Reveillere C, El-Hage W. Mediation and moderation of positivity, cognitive fusion, brooding and mindfulness. Encephale. 2023;49(3):227-33. doi:10.1016/j.encep.2021.12.003
[84] Wang Q, Zhang W, An S. Internet-based self-help interventions for adolescent and college mental health: Systematic review and meta-analysis. Internet Interv. 2023;34:100690. doi:10.1016/j.invent.2023.100690
[85] Wang T, Liu Z, Wang L, Li M, Wang XV. Data-efficient multimodal human action recognition for proactive HRC assembly: Few-shot cross-domain learning. Rob Comput Integr Manuf. 2024;89:102785. doi:10.1016/j.rcim.2024.102785
[86] Wang Z, Xu Z, Wang X, Xie M. Temporal-spatial cleaning optimization for photovoltaic power plants. Sustain Energy Technol Assess. 2022;49:101691. doi:10.1016/j.seta.2021.101691
[87] Webb J. Managing child and adolescent depression. In: Reference Module in Neuroscience and Biobehavioral Psychology. 2023. doi:10.1016/B978-0-323-95702-1.00018-X
[88] Woo J, Shidara K, Achard C, Tanaka H, Nakamura S, Pelachaud C. Adaptive virtual agent: Design and evaluation for real-time human–agent interaction. Int J Hum Comput Stud. 2024;190:103321. doi:10.1016/j.ijhcs.2024.103321
[89] Acuña Acuña EG. Fortalecimiento de la integridad académica a través de la IA: estrategias de prevención del plagio en la era digital. Areté Rev Digit Dr Educ. 2024;10(ee):49-67. Disponible en: https://saber.ucv.ve/ojs/index.php/rev_arete/article/view/29452
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jesus Morgan Asch, Edwin Gerardo Acuña Acuña

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.