Hybrid Template Matching and Faster R-CNN for Robust Multimodal Object Detection

Authors

DOI:

https://doi.org/10.4108/eetismla.9544

Keywords:

Attention Mechanism, CNN, Multimodal Data, Object Detection, Transformer

Abstract

This paper introduces a hybrid object detection framework that integrates template matching with the Faster R-CNN deep learning algorithm to improve robustness in challenging conditions such as occlusion, clutter, and low resolution. The novelty of this work lies in systematically combining a traditional template-matching branch with a two-stage detector, enabling the system to capture predefined structural cues alongside learned deep features. The proposed score-based fusion mechanism further refines detections by weighting outputs from both branches. Experimental results on COCO and LASIESTA datasets show that the hybrid model achieves an F1 score of 88.6% and a mAP@0.75 of 69.4%, surpassing both template-only and Faster R-CNN-only baselines. These findings highlight the effectiveness of the hybrid strategy in enhancing detection accuracy and robustness while maintaining practical computational efficiency.

Downloads

Download data is not yet available.

References

1. Amit Y, Felzenszwalb P, Girshick R. Object detection. In: Computer Vision: A Reference Guide. Springer; 2021. p. 875–83. DOI: https://doi.org/10.1007/978-3-030-63416-2_660

2. Chen W, Li Y, Tian Z, Zhang F. 2D and 3D object detection algorithms from images: A Survey. Array. 2023;100305. DOI: https://doi.org/10.1016/j.array.2023.100305

3. Deng J, Xuan X, Wang W, Li Z, Yao H, Wang Z. A review of research on object detection based on deep learning. In: Journal of Physics: Conference Series. IOP Publishing; 2020. p. 012028. DOI: https://doi.org/10.1088/1742-6596/1684/1/012028

4. LUO H lan, CHEN H kun. Survey of object detection based on deep learning. Acta Electonica Sinica. 2020;48(6):1230.

5. Ren J, Wang Y. Overview of object detection algorithms using convolutional neural networks. Journal of Computer and Communications. 2022;10(1):115–32.

6. Zhao L, Li S. Object detection algorithm based on improved YOLOv3. Electronics (Basel). 2020;9(3):537. DOI: https://doi.org/10.3390/electronics9030537

7. Li Z, Du Y, Zhu M, Zhou S, Zhang L. A survey of 3D object detection algorithms for intelligent vehicles development. Artif Life Robot. 2022;1–8. DOI: https://doi.org/10.1007/s10015-021-00711-0

8. Li K, Cao L. A review of object detection techniques. In: 2020 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT). IEEE; 2020. p. 385–90. DOI: https://doi.org/10.1109/ICECTT50890.2020.00091

9. Bouguettaya A, Kechida A, TABERKIT AM. A survey on lightweight CNN-based object detection algorithms for platforms with limited computational resources. International Journal of Informatics and Applied Mathematics. 2019;2(2):28–44.

10. Zhao R, Niu X, Wu Y, Luk W, Liu Q. Optimizing CNN-based object detection algorithms on embedded FPGA platforms. In: Applied Reconfigurable Computing: 13th International Symposium, ARC 2017, Delft, The Netherlands, April 3-7, 2017, Proceedings 13. Springer; 2017. p. 255–67. DOI: https://doi.org/10.1007/978-3-319-56258-2_22

11. Huang R, Pedoeem J, Chen C. YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers. In: 2018 IEEE international conference on big data (big data). IEEE; 2018. p. 2503–10. DOI: https://doi.org/10.1109/BigData.2018.8621865

12. Waheed SR, Suaib NM, Rahim MSM, Adnan MM, Salim AA. Deep learning algorithms-based object detection and localization revisited. In: journal of physics: conference series. IOP Publishing; 2021. p. 012001. DOI: https://doi.org/10.1088/1742-6596/1892/1/012001

13. Mahaur B, Singh N, Mishra KK. Road object detection: a comparative study of deep learning-based algorithms. Multimed Tools Appl. 2022;81(10):14247–82. DOI: https://doi.org/10.1007/s11042-022-12447-5

14. John A, Meva D. A comparative study of various object detection algorithms and performance analysis. International Journal of Computer Sciences and Engineering. 2020;8(10):158–63.

15. Padilla R, Netto SL, Da Silva EAB. A survey on performance metrics for object-detection algorithms. In: 2020 international conference on systems, signals and image processing (IWSSIP). IEEE; 2020. p. 237–42. DOI: https://doi.org/10.1109/IWSSIP48289.2020.9145130

16. Sun W, Dai L, Zhang X, Chang P, He X. RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring. Applied Intelligence. 2021;1–16. DOI: https://doi.org/10.1007/s10489-021-02893-3

17. Galteri L, Bertini M, Seidenari L, Del Bimbo A. Video compression for object detection algorithms. In: 2018 24th International Conference on Pattern Recognition (ICPR). IEEE; 2018. p. 3007–12. DOI: https://doi.org/10.1109/ICPR.2018.8546064

18. Kumar A, Zhang ZJ, Lyu H. Object detection in real time based on improved single shot multi-box detector algorithm. EURASIP J Wirel Commun Netw. 2020;2020:1–18. DOI: https://doi.org/10.1186/s13638-020-01826-x

19. Raghunandan A, Raghav P, Aradhya HVR. Object detection algorithms for video surveillance applications. In: 2018 International Conference on Communication and Signal Processing (ICCSP). IEEE; 2018. p. 563–8. DOI: https://doi.org/10.1109/ICCSP.2018.8524461

20. Zangana HM, Mustafa FM, Omar M. A Hybrid Approach for Robust Object Detection: Integrating Template Matching and Faster R-CNN. EAI Endorsed Transactions on AI and Robotics. 2024;3. DOI: https://doi.org/10.4108/airo.6858

21. Li M, Zhu H, Chen H, Xue L, Gao T. Research on object detection algorithm based on deep learning. In: Journal of Physics: Conference Series. IOP Publishing; 2021. p. 012046. DOI: https://doi.org/10.1088/1742-6596/1995/1/012046

22. Chen C, Liu MY, Tuzel O, Xiao J. R-CNN for small object detection. In: Computer Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part V 13. Springer; 2017. p. 214–30. DOI: https://doi.org/10.1007/978-3-319-54193-8_14

23. Du L, Zhang R, Wang X. Overview of two-stage object detection algorithms. In: Journal of Physics: Conference Series. IOP Publishing; 2020. p. 012033. DOI: https://doi.org/10.1088/1742-6596/1544/1/012033

24. Xiao Y, Tian Z, Yu J, Zhang Y, Liu S, Du S, et al. A review of object detection based on deep learning. Multimed Tools Appl. 2020;79:23729–91. DOI: https://doi.org/10.1007/s11042-020-08976-6

25. Malhotra P, Garg E. Object detection techniques: a comparison. In: 2020 7th International Conference on Smart Structures and Systems (ICSSS). IEEE; 2020. p. 1–4. DOI: https://doi.org/10.1109/ICSSS49621.2020.9202254

26. Cuevas C, Yáñez EM, García N. Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA. Computer Vision and Image Understanding. 2016;152:103–17. DOI: https://doi.org/10.1016/j.cviu.2016.08.005

27. Peng L, Wang H, Li J. Uncertainty evaluation of object detection algorithms for autonomous vehicles. Automotive Innovation. 2021;4(3):241–52. DOI: https://doi.org/10.1007/s42154-021-00154-0

28. Haris M, Glowacz A. Road object detection: A comparative study of deep learning-based algorithms. Electronics (Basel). 2021;10(16):1932. DOI: https://doi.org/10.3390/electronics10161932

29. Wang J, Jiang S, Song W, Yang Y. A comparative study of small object detection algorithms. In: 2019 Chinese control conference (CCC). IEEE; 2019. p. 8507–12. DOI: https://doi.org/10.23919/ChiCC.2019.8865157

30. Yadav N, Binay U. Comparative study of object detection algorithms. International Research Journal of Engineering and Technology (IRJET). 2017;4(11):586–91.

31. Zhou Y, Yang X, Zhang G, Wang J, Liu Y, Hou L, et al. Mmrotate: A rotated object detection benchmark using pytorch. In: Proceedings of the 30th ACM International Conference on Multimedia. 2022. p. 7331–4. DOI: https://doi.org/10.1145/3503161.3548541

Downloads

Published

01-10-2025

How to Cite

[1]
H. M. Zangana, “Hybrid Template Matching and Faster R-CNN for Robust Multimodal Object Detection”, EAI Endorsed Trans Int Sys Mach Lear App, vol. 2, Oct. 2025.