Consumption of Licit and Illicit Substances leading to Mental Illness: A Prevalence Study
DOI:
https://doi.org/10.4108/eai.11-5-2020.164415Keywords:
Mental Illness, Depression, Anxiety, Machine Learning, Support Vector Machine, Feature Selection, Cross Sectional StudyAbstract
Background: A menace case of drug & narcotics abuse has been in prime focus of the society nowadays. Therefore, the need of technological intervention is primary concern to examine the prevalence, severity and outcome to the drug menace and its consequences.
Objective: This study is to suffice clinical decisions through behaviour observatory data through preliminary screening of prevalence, correlation and severity of illness.
Method: The model has been proposed to check for General Anxiety Disorder and Depression of a subject abusing any of the drug/marijuana/alcohol. In this model data set of Sikkim’s youth has been considered to find relation of addiction leading to mental disorder.
Result: This proposed system has been successful to associate any form of substance abuse to to some of illness to a limit of .83 accuracy scored by Support Vector Machine over the other machine learning models. The model has been deployed and being observed in few of the rehabilitation centre.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Pervasive Health and Technology
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.