Voice-Based Detection of Parkinson’s Disease through Ensemble Machine Learning Approach: A Performance Study
DOI:
https://doi.org/10.4108/eai.13-7-2018.162806Keywords:
Parkinson’s disease, speech signals, machine learning, classification, feature selectionAbstract
INTRODUCTION: Parkinson's disease (PD) occurs due to the deficiency of dopamine that regulates various activities of the human body. Researchers have identified that voice is an underlying symptom of PD. Recently, Machine learning (ML) has helped in solving problems of computer vision, natural language processing, speech recognition etc.
OBJECTIVES: This paper aims to analyse the effect of feature type selection i.e. MFCC and TQWT on the efficiency of voice based PD detection system along with the use an ensemble learning based classifier for this task.
METHODS: Hence, in this work, various machine learning models, including Logistic Regression, Naive Bayes, KNN, Random Forest, Decision Tree, SVM, MLP, and XGBoost, have been employed and explored for PD detection purpose. The task of Feature selection was also done using minimum-Redundancy and Maximum-Relevance (mRMR) and Recursive Feature Elimination (RFE) techniques.
RESULTS: The results of the XGBoost with mRMR feature selection, outperformed all other models with a high accuracy of 95.39% and precision, recall and F1-score of 0.95 each, when both MFCC and TQWT features were selected.
CONCLUSION: The results obtained strongly support the use of XGBoost model for the voice sample based detection of PD along with mRMR feature selection technique.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Pervasive Health and Technology
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.