Estimating Calorie Expenditure from Output Voltage of Piezoelectric Energy Harvester - an Experimental Feasibility Study
DOI:
https://doi.org/10.4108/eai.28-9-2015.2261453Keywords:
piezoelectric energy harvester, accelerometer, calorie expenditure estimationAbstract
There is a growing interest in developing energy harvesting solutions for wearable devices so they can self-power themselves without relying on batteries. Piezoelectric energy harvesters (PEHs) can convert kinetic energy released from human activities into usable electrical energy for powering various electronic circuits inside the wearable device. Intuitively, the kinetic energy is produced because the user expends some calories during the physical activities. We therefore postulate that the voltage output of a PEH in a wearable device should contain information that can be used to estimate the amount of calorie expended. If this is true, then the PEH can be used as a new source for calorie estimation. Unlike conventional sensors, such as accelerometers, a PEH does not consume any power, which would make this new source very attractive. In this paper, using real PEH hardware and the data collected from ten real subjects, we conduct an experimental study to assess the suitability of PEH voltage in estimating calorie expenditure for two different activities, walking and running. We find that, for most subjects, the calorie estimations obtained from the output voltage of PEH is very close to those obtained from a 3-axial accelerometer.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Pervasive Health and Technology
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.