Recognising lifestyle activities of diabetic patients with a smartphone
DOI:
https://doi.org/10.4108/icst.pervasivehealth.2015.259118Keywords:
diabetes, lifestyle, activity recognition, smartphone, sensorsAbstract
Diabetes is both heavily affected by the patients’ lifestyle, and it affects their lifestyle. Most diabetic patients can manage the disease without technological assistance, so we should not burden them with technology unnecessarily, but lifestylemonitoring technology can still be beneficial both for patients and their physicians. Because of that we developed an approach to lifestyle monitoring that uses the smartphone, which most patients already have. The approach consists of three steps. First, a number of features are extracted from the data acquired by smartphone sensors, such as the user’s location from GPS coordinates and visible wi-fi access points, and the physical activity from accelerometer data. Second, several classifiers trained by machine learning are used to recognise the user’s activity, such as work, exercise or eating. And third, these activities are refined by symbolic reasoning encoded in Event Calculus. The approach was trained and tested on five people who recorded their activities for two weeks each. Its classification accuracy was 0.88.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Pervasive Health and Technology
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.