Detecting affective states in virtual rehabilitation
DOI:
https://doi.org/10.4108/icst.pervasivehealth.2015.259250Keywords:
affective computing, virtual rehabilitation, stroke, hand, motor recoveryAbstract
Virtual rehabilitation supports motor training following stroke by means of tailored virtual environments. To optimize therapy outcome, virtual rehabilitation systems automatically adapt to the different patients’ changing needs. Adaptation decisions should ideally be guided by both the observable performance and the hidden mind state of the user. We hypothesize that some affective aspects can be inferred from observable metrics. Here we present preliminary results of a classification exercise to decide on 4 states; tiredness, tension, pain and satisfaction. Descriptors of 3D hand movement and finger pressure were collected from 2 post-stroke participants while they practice on a virtual rehabilitation platform. Linear Support Vector Machine models were learnt to unfold a predictive relation between observation and the affective states considered. Initial results are promising (ROC Area under the curve (mean+/-std): 0.713 +/- 0.137). Confirmation of these opens the door to incorporate surrogates of mind state into the algorithm deciding on therapy adaptation.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Pervasive Health and Technology
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.