Classification of brain tumor using a multistage approach based on RELM and MLBP

Authors

  • R. Bhavani Research Scholar
  • K. Vasanth Professor/Electrical and Communication Engineering

DOI:

https://doi.org/10.4108/eetpht.v8i4.3082

Keywords:

multistage neighbouring, modified local binary pattern, regularized extreme learning machine

Abstract

INTRODUCTION: Automatic segmentation and classification of brain tumors help in improvement of treatment which will increase the life of the patient. Tumor may be noncancerous (benign) or cancerous (malignant). Precancerous cells may also form into cancer.

OBJECTIVES: Hough CNN is applied for selected section which applies hough casting technique in segmentation. METHODS: A multistage methodof extracting features, with multistage neighbouring is done for emerging an exact brain tumor classifying methodology.

RESULTS: In this dataset three types of brain tumors are available they are meningioma, glioma, and pituitary.. CONCLUSION: This paperpresented an efficient brain tumor classification approach which involves multiscale preprocessing, multiscale feature extraction and classification.

Downloads

Download data is not yet available.

References

Mohan G, Subashin, M. MRI based medical image analysis: Survey on brain tumor grade classification. Biomed. Signal Processing Control. 2018; 39: 139–161. DOI: https://doi.org/10.1016/j.bspc.2017.07.007

Işın A. Direkoğlu, C. Şah, M. Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Computer Science. 2016; 102: 317–324. DOI: https://doi.org/10.1016/j.procs.2016.09.407

Sachdeva J. Kumar V. Gupta I. Khandelwal N. Ahuja,

C.K. A package-SFERCB-“Segmentation, features extraction, reduction and classification analysis by both SVM and ANN for brain tumors”. Applied Soft Computing. 2016; 47: 151–167. DOI: https://doi.org/10.1016/j.asoc.2016.05.020

Sharma Y. Chhabra M. An improved automatic brain tumor detection system. International Journal of Advanced Research in Computer Science and Software Engineering. 2015; 5(4): 11–15.

Chaddad A. Tanougast C. Quantitative evaluation of robust skull stripping and tumor detection applied to axial MR images. Brain Information. 2016; 3: 53–61. DOI: https://doi.org/10.1007/s40708-016-0033-7

Iftekharuddin K.M. Zheng J. Islam M.A. Ogg R.J. Fractal- based brain tumor detection in multimodal MRI. Applied Mathematics and Computation. 2009; 207: 23–41. DOI: https://doi.org/10.1016/j.amc.2007.10.063

Litjens G. Kooi T. Bejnordi B.E. Arindra A. Setio A. Ciompi F. Ghafoorian M. van der Laak, J.A.W.M. van Ginneken B. Sánchez C.I. A survey on deep learning in medical image analysis. Medical Image Analysis. 2017; 42: 60–88. DOI: https://doi.org/10.1016/j.media.2017.07.005

Shelhamer E. Long J. Darrell T. Fully Convolutional networks for semantic segmentation. IEEE Transaction Pattern Analysis Machine Intelligence. 2017; 39: 640–651. DOI: https://doi.org/10.1109/TPAMI.2016.2572683

Badrinarayanan V. Kendall A. Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation.IEEE Transaction Pattern Analysis Machine Intelligence. 2017; 39: 2481–2495. DOI: https://doi.org/10.1109/TPAMI.2016.2644615

Astina M. “MR Image classification using adaboostfor brain tumor type”. Proceeding of the 2017 IEEE 7th International Advance Computing Conference (IACC). 5-7 January; Hyderabad. 2017; p.p 701-705.

Jain S. Brain cancer classification using GLCM based feature extraction in artificial neural network. International Journal of Computer Science & Engineering Technology. 2013;4(7):966-70.

Sridhar D, Krishna IM. Brain tumor classification using discrete cosine transform and probabilistic neural network. Proceeding of the 2013 International Conference on Signal Processing, Image Processing & Pattern Recognition. 7-8 February; Coimbatore, India. 2013; pp. 92-96. DOI: https://doi.org/10.1109/ICSIPR.2013.6497966

Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H. Brain tumor segmentation with deep neural networks. Medical image analysis. 2017; 35: 18-31. DOI: https://doi.org/10.1016/j.media.2016.05.004

Stollenga MF, Byeon W, Liwicki M, Schmidhuber J. Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. Advances in neural information processing systems. 2015; 28: 2998- 3006.

Milletari F, Ahmadi SA, Kroll C, Plate A, Rozanski V, Maiostre J, Levin J, Dietrich O, Ertl-Wagner B, Bötzel K, Navab N. Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Computer Vision and Image Understanding. 2017; 164: 92-102. DOI: https://doi.org/10.1016/j.cviu.2017.04.002

Pereira S, Pinto A, Alves V, Silva CA. Deep convolutional neural networks for the segmentation of gliomas in multi- sequence MRI. InBrainLes. 2015; pp. 131-143. DOI: https://doi.org/10.1007/978-3-319-30858-6_12

Isensee F, Kickingereder P, Wick W, Bendszus M, Maier- Hein KH. Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge. In International MICCAI Brainlesion Workshop. 2017; pp. 287-297. DOI: https://doi.org/10.1007/978-3-319-75238-9_25

Saba T, Mohamed AS, El-Affendi M, Amin J, Sharif M. Brain tumor detection using fusion of hand crafted and deep learning features. Cognitive Systems Research. 2020; 59: 221-30. DOI: https://doi.org/10.1016/j.cogsys.2019.09.007

Afshar P, Plataniotis KN, Mohammadi A. Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries. Proceeding of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 12-17 May; Brighton, UK. 2019; pp. 1368-1372. DOI: https://doi.org/10.1109/ICASSP.2019.8683759

Nie D, Zhang H, Adeli E, Liu L, Shen D. 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. Proceeding of the International conference on medical image computing and computer- assisted intervention. 17 October; 2016; pp. 212-220. DOI: https://doi.org/10.1007/978-3-319-46723-8_25

Y. Xu, Z. Jia, Y. Ai, F. Zhang, M. Lai, I. Eric, and C. Chang. Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. Proceeding of the 2015 IEEE DOI: https://doi.org/10.1109/ICASSP.2015.7178109

Shahzadi I, Tang TB, Meriadeau F, Quyyum A. CNN- LSTM: Cascaded framework for brain Tumour classification. Proceeding of the 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). 3 December; Sarawak, Malaysia. 2018; pp. 633-637. DOI: https://doi.org/10.1109/IECBES.2018.8626704

Huang B, Li J, Hu S. Texture feature extraction using ICA filters. In2008 7th World Congress on Intelligent Control and Automation. 25-27 June; Chongqing, China. 2008; pp. 7631-7634.

Gumaei A, Hassan MM, Hassan MR, Alelaiwi A, Fortino

G. A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access. 2019; 7: pp. 36266-36273. DOI: https://doi.org/10.1109/ACCESS.2019.2904145

Roslan R, Jamil N. Texture feature extraction using 2-D Gabor Filters. Proceeding of the 2012 International Symposium on Computer Applications and Industrial Electronics (ISCAIE). 3-4 December; Kota Kinabalu, Malaysia. 2012; pp. 173-178. DOI: https://doi.org/10.1109/ISCAIE.2012.6482091

Elazab A, Wang C, Jia F, Wu J, Li G, Hu Q. Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy-means clustering. Computational and mathematical methods in medicine. 2015; 2015.medicine. 2015; 2015. DOI: https://doi.org/10.1155/2015/485495

Castro, MP.; Ojeda Sánchez, JC.; Ochoa Aucay, JE. The role of intestine as a target with a therapeutic role in people with a neurodegenerative diseases. Salud, Ciencia y Tecnología. 2023, 3:310. https://doi.org/10.56294/saludcyt2023310 DOI: https://doi.org/10.56294/saludcyt2023310

Downloads

Published

30-09-2022

How to Cite

1.
Bhavani R, Vasanth K. Classification of brain tumor using a multistage approach based on RELM and MLBP. EAI Endorsed Trans Perv Health Tech [Internet]. 2022 Sep. 30 [cited 2024 Apr. 19];8(4):e4. Available from: https://publications.eai.eu/index.php/phat/article/view/3082