Deep Learning Framework for Identification of Skin Lesions
DOI:
https://doi.org/10.4108/eetpht.9.3900Keywords:
Convolutional Neural Network, Grey Level Co-occurrence Matrix, Rectilinear Unit, Stochastic Gradient DescentAbstract
Skin ailments don't just affect the physical appearance of an individual but also lead to psychological issues. Vitiligo and discoloration patches are such conditions that can negatively impact one's self-assurance. Here, authors have designed 14 distinct models to classify skin lesions using the HAM10000 dataset which is sorted into 7 classes including Actinic Keratosis, Melanocytic nevi, Actinic keratoses, Melanoma, Benign keratosis-like lesions, Basal cell carcinoma, and Vascular lesions. Further, authors compared their model against other state-of-the-art models, and additional-ly employed various pre-trained models like Resnet50, InceptionV3, MobileNetV2, Densenet201, VGG16, VGG19, InceptionResnetv2, Xception, EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, Effi-cientNetB4, EfficientNetB5 that were trained on image net datasets. Their primary aim was to develop a framework that can be implemented in real-world applications using Efficient Nets. Experimental evaluations have shown that their proposed models have outperformed traditional pre-trained models like ResNets and VGG16 in terms of accuracy, precision, re-call, and validation loss, despite being lightweight. Interestingly, this im-provement was achieved without any data augmentation techniques. The authors achieved accuracy above 90% for all the EfficientNet models (B0-B5), which was far better than the existing pre-trained models, thus establishing the supremacy of proposed model.
Downloads
References
Shahin, AH, Kamal, A, Elattar, MA (2018). Deep ensemble learning for skin lesion classification from dermoscopic images. In: IEEE 9th Cairo international biomedical engineering conference - CIBEC’2018, pp 150-153. doi: https://doi.org/10.1109/CIBEC.2018.8641815. DOI: https://doi.org/10.1109/CIBEC.2018.8641815
M. A. Albahar, ”Skin Lesion Classification Using Convolutional Neural Network With Novel Regularizer,” in IEEE Access, vol. 7, pp. 38306-38313, 2019, doi: 10.1109/ACCESS.2019.2906241. DOI: https://doi.org/10.1109/ACCESS.2019.2906241
Hosny KM, Kassem MA, Foaud MM. Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS One. 2019 May 21;14(5):e0217293. doi: 10.1371/journal.pone.0217293. PMID: 31112591; PMCID: PMC6529006. DOI: https://doi.org/10.1371/journal.pone.0217293
M. A. Hilmy and P. S. Sasongko, ”Ensembles of Convolutional Neural Networks for Skin Lesion Dermoscopy Images Classification,” 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), Semarang, Indonesia, 2019, pp. 1-6, doi: 10.1109/ICICoS48119.2019.8982484. DOI: https://doi.org/10.1109/ICICoS48119.2019.8982484
S.R.Hassan,S.Afroge and M.B.Mizan,”Skin Lesion Classification Using Densely Connected Convolutional Network”,2020 IEEE Region 10 Symposium (TENSYMP), June 2020, Dhaka, Bangladesh.
H. Alquran et al.,” The melanoma skin cancer detection and classification using support vector machine,” 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Aqaba, 2017, pp. 1-5, doi: 10.1109/AEECT.2017.8257738. DOI: https://doi.org/10.1109/AEECT.2017.8257738
e, D. N. T., Le, H. X., Ngo, L. T., and Ngo, H. T., “Transfer learning with class-weighted and focal loss function for automatic skin cancer classification”, arXiv:2009.05977v1 [cs.AI],2020.
R. Yasir, M. A. Rahman and N. Ahmed, ”Dermatological disease detection using image processing and artificial neural network,” 8th International Conference on Electrical and Computer Engineering, Dhaka, 2014, pp. 687-690, doi: 10.1109/ICECE.2014.7026918.
Karl Thurnhofer-Hemsi1, Enrique Dom´ınguez2 ,“Analyzing Digital Image by Deep Learning for Melanoma Diagnosis” ,International Work Conference on Artificial Neural Networks,2019,DOI:10.1007/978-3-030-20518-823. DOI: https://doi.org/10.1007/978-3-030-20518-8_23
Abhinav Sagar, DheebaJ ,“Convolutional Neural Networks for Classifying Melanoma Images”,doi: https://doi.org/10.1101/2020.05.22.110973 DOI: https://doi.org/10.1101/2020.05.22.110973
Li-sheng Wei, Quan Gan, Tao Ji, ”Skin Disease Recognition Method Based on Image Color and Texture Features”, Computational and Mathematical Methods in Medicine, vol. 2018, Article ID 8145713, 10 pages, 018. https://doi.org/10.1155/2018/8145713 DOI: https://doi.org/10.1155/2018/8145713
Milton, Md Ashraful Alam. (2018). Automated Skin Lesion Classification Using Ensemble of Deep Neural Networks in ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection Challenge
Kshirsagar, Pravin. (2020). SKIN DISEASE RECOGNITION METHOD BASED ON IMAGE COLOR AND NEURAL NETWORK.
Chaturvedi, SS, Gupta, K, Prasad, P (2019). Skin lesion analyser: an efficient seven-way multi-class skin cancer classification using MobileNet. arXiv preprint arXiv:1907.03220 DOI: https://doi.org/10.1007/978-981-15-3383-9_15
Majtner, T, Bajić, B, Yildirim, S, Hardeberg, JY, Lindblad, J, Sladoje, N (2018). Ensemble of convolutional neural networks for dermoscopic images classification. arXiv preprint arXiv:1808.05071
R. Yasir, M. A. Rahman and N. Ahmed, ”Dermatological disease detection using image processing and artificial neural network,” 8th International Conference on Electrical and Computer Engineering, Dhaka, 2014, pp. 687-690, doi: 10.1109/ICECE.2014.7026918. DOI: https://doi.org/10.1109/ICECE.2014.7026918
Santosh, K.C. and Hegadi, R.S. eds., 2019. Recent Trends in Image Processing and Pattern Recognition: Second International Conference, RTIP2R 2018, Solapur, India, December 21–22, 2018, Revised Selected Papers, Part I (Vol. 1035). Springer. DOI: https://doi.org/10.1007/978-981-13-9187-3
Dan Wang, Na Pang, Yanying Wang, Hongwei Zhao,2021, “Unlabeled skin lesion classification by self-supervised topology clustering network,” Biomedical Signal Processing and Control, volume 66,102428, ISSN 1746-8094, vhttps://doi.org/10.1016/j.bspc.2021.102428. DOI: https://doi.org/10.1016/j.bspc.2021.102428
Zhao, Z.; Wu, C.M.; Zhang, S.; He, F.; Liu, F.; Wang, B.; Huang, Y.; Shi, W.; Jian, D.; Xie, H.; et al. A Novel Convolutional Neural
Network for the Diagnosis and Classification of Rosacea: Usability Study. Jmir Med. Inform. 2021, 9, e23415. DOI: https://doi.org/10.2196/23415
Dutta A., Kamrul Hasan M., Ahmad M. (2021) Skin Lesion Classification Using Convolutional Neural Network for Melanoma Recognition. In: Uddin M.S., Bansal J.C. (eds) Proceedings of International Joint Conference on Advances in Computational Intelligence. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-0586-4_5 DOI: https://doi.org/10.1007/978-981-16-0586-4_5
Cullell-Dalmau M, Noé S, Otero-Viñas M, Meić I and Manzo C (2021) Convolutional Neural Network for Skin Lesion Classification: Understanding the Fundamentals Through Hands-On Learning. Front. Med. 8:644327. doi: 10.3389/fmed.2021.644327 DOI: https://doi.org/10.3389/fmed.2021.644327
Abhishek, K., Kawahara, J. and Hamarneh, G., 2021. Predicting the clinical management of skin lesions using deep learning. Scientific reports, 11(1), pp.1-14. DOI: https://doi.org/10.1038/s41598-021-87064-7
Hasan, M. K., Elahi, M. T. E., Alam, M. A., & Jawad, M. T. (2021). DermoExpert: Skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning, and augmentation. medRxiv. DOI: https://doi.org/10.1101/2021.02.02.21251038
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nonita Sharma, Monika Mangla, M Mohamed Iqbal, Sachi Nandan Mohanty
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.