Big data-analysis, map reduced framework, security & privacy challenges and techniques in health sector

Authors

DOI:

https://doi.org/10.4108/eetpht.9.4292

Keywords:

Big Data, Data Analytics, Map Reduced Framework, Privacy, Security

Abstract

INTRODUCTION: Data is increasing exponentially. Data processing is an essential component in all industries, including health care. Even though a lot of progress has been made, it has been noted that in the recent decade, the health industry is capable of efficiently utilizing data and providing perfect Advancements in therapies.

OBJECTIVES: the main objectives include of finding the right problems in the security systems and to review the methods of present data processing methods.

METHODS: Methods involved are Quantitive analysis, Descriptive analysis, Data cleaning and Extraction.

RESULTS: The outputs of the reduce function are combined across all reducer nodes to produce the final output.

CONCLUSION: Big data analytics has enormous potential to accelerate the health care industry and that can only be done with some innovative methods and security plays a crucial role and can be a good catalyst in the user experience elements.

Downloads

Download data is not yet available.

References

Munusamy, Ambigavathi & Sridharan, D.. (2018). Big Data Analytics in Healthcare. 269-276. 10.1109/ICoAC44903.2018.8939061.

Wang, Y., Kung, L., Wang, W. Y. C., & Cegielski, C. G. (2018). An integrated big data analytics-enabled transformation model: Application to health care. Information & Management, 55(1), 64-79. DOI: https://doi.org/10.1016/j.im.2017.04.001

Ambigavathi, M., & Sridharan, D. (2018, December). Big data analytics in healthcare. In 2018 tenth international conference on advanced computing (ICoAC) (pp. 269-276). IEEE. DOI: https://doi.org/10.1109/ICoAC44903.2018.8939061

Sangjukta Das, Suyel Namasudra, A Novel Hybrid Encryption Method to Secure Healthcare Data in IoT-enabled Healthcare Infrastructure, Computers, and Electrical Engineering, Volume 101,2022,107991,ISSN 0045-7906,https://doi.org/10.1016/j.compeleceng.2022.107991.(https://www.sciencedirect.com/science/article/pii/S0045790622002609). DOI: https://doi.org/10.1016/j.compeleceng.2022.107991

Wang, Yichuan & Byrd, Terry. (2017). Business Analytics-Enabled Decision-Making Effectiveness through Knowledge Absorptive Capacity in Health Care. Journal of Knowledge Management. 21. 517-539. 10.1108/JKM-08-2015-0301. DOI: https://doi.org/10.1108/JKM-08-2015-0301

Zeng, Xuezhi & Garg, Saurabh & Wen, Zhenyu & Strazdins, Peter & Zomaya, Albert & Ranjan, R.. (2017). Cost-Efficient Scheduling of MapReduce Applications on Public Clouds. Journal of Computational Science. 26. 10.1016/j.jocs.2017.07.017. DOI: https://doi.org/10.1016/j.jocs.2017.07.017

A.S. Thanuja Nishadi (2019); Healthcare Big Data Analysis using Hadoop MapReduce; International Journal of Scientific and Research Publications (IJSRP) 9(3) (ISSN: 2250-3153), DOI: http://dx.doi.org/10.29322/IJSRP.9.03.2019.p87104 DOI: https://doi.org/10.29322/IJSRP.9.03.2019.p87104

Ristevski B, Chen M. Big Data Analytics in Medicine and Healthcare. J Integr Bioinform. 2018 May 10;15(3):20170030. doi: 10.1515/jib-2017-0030. PMID: 29746254; PMCID: PMC6340124. DOI: https://doi.org/10.1515/jib-2017-0030

Batko, K., Ślęzak, A. The use of Big Data Analytics in healthcare. J Big Data 9, 3 (2022). https://doi.org/10.1186/s40537-021-00553-4 DOI: https://doi.org/10.1186/s40537-021-00553-4

Dash, S., Shakyawar, S.K., Sharma, M. et al. Big data in healthcare: management, analysis, and prospects. J Big Data 6, 54 (2019). https://doi.org/10.1186/s40537-019-0217-0 DOI: https://doi.org/10.1186/s40537-019-0217-0

L. Wang and R. Jones, "Big Data, Cybersecurity, and Challenges in Healthcare," 2019 SoutheastCon, Huntsville, AL, USA, 2019, pp. 1-6, doi: 10.1109/SoutheastCon42311.2019.9020632. DOI: https://doi.org/10.1109/SoutheastCon42311.2019.9020632

Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: promise and potential. Health information science and systems, 2, 1-10. DOI: https://doi.org/10.1186/2047-2501-2-3

Nambiar, R., Bhardwaj, R., Sethi, A., & Vargheese, R. (2013, October). A look at challenges and opportunities of big data analytics in healthcare. In 2013 IEEE international conference on Big Data (pp. 17-22). IEEE. DOI: https://doi.org/10.1109/BigData.2013.6691753

Sun, J., & Reddy, C. K. (2013, August). Big data analytics for healthcare. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1525-1525). DOI: https://doi.org/10.1145/2487575.2506178

Archenaa, J., & Anita, E. M. (2015). A survey of big data analytics in healthcare and government. Procedia Computer Science, 50, 408-413. DOI: https://doi.org/10.1016/j.procs.2015.04.021

Raj, P., Raman, A., Nagaraj, D., Duggirala, S., Raj, P., Raman, A., & Duggirala, S. (2015). Big data analytics for healthcare. High-Performance Big-Data Analytics: Computing Systems and Approaches, 391-424. DOI: https://doi.org/10.1007/978-3-319-20744-5_14

Manogaran, G., Lopez, D., Thota, C., Abbas, K. M., Pyne, S., & Sundarasekar, R. (2017). Big data analytics in healthcare Internet of Things. Innovative healthcare systems for the 21st century, 263-284. DOI: https://doi.org/10.1007/978-3-319-55774-8_10

Khan, Z. F., & Alotaibi, S. R. (2020). Applications of artificial intelligence and big data analytics in m-health: a healthcare system perspective. Journal of healthcare engineering, 2020, 1-15. DOI: https://doi.org/10.1155/2020/8894694

Wong, Z. S., Zhou, J., & Zhang, Q. (2019). Artificial intelligence for infectious disease big data analytics. Infection, disease & health, 24(1), 44-48. DOI: https://doi.org/10.1016/j.idh.2018.10.002

Abidi, S. S. R., & Abidi, S. R. (2019, July). Intelligent health data analytics: a convergence of artificial intelligence and big data. In Healthcare management forum (Vol. 32, No. 4, pp. 178-182). Sage CA: Los Angeles, CA: SAGE Publications. DOI: https://doi.org/10.1177/0840470419846134

Singh, R. K., Agrawal, S., Sahu, A., & Kazancoglu, Y. (2023). Strategic issues of big data analytics applications for managing health-care sector: a systematic literature review and future research agenda. The TQM Journal, 35(1), 262-291. DOI: https://doi.org/10.1108/TQM-02-2021-0051

Khanna, D., Jindal, N., Singh, H., & Rana, P. S. (2023). Applications and Challenges in Healthcare Big Data: A Strategic Review. Current Medical Imaging, 19(1), 27-36. DOI: https://doi.org/10.2174/1573405618666220308113707

Bag, S., Dhamija, P., Singh, R. K., Rahman, M. S., & Sreedharan, V. R. (2023). Big data analytics and artificial intelligence technologies based collaborative platform empowering absorptive capacity in health care supply chain: An empirical study. Journal of Business Research, 154, 113315. DOI: https://doi.org/10.1016/j.jbusres.2022.113315

Downloads

Published

02-11-2023

How to Cite

1.
Sarkar R, Telugu M, Kuntla N. Big data-analysis, map reduced framework, security & privacy challenges and techniques in health sector. EAI Endorsed Trans Perv Health Tech [Internet]. 2023 Nov. 2 [cited 2024 Dec. 27];9. Available from: https://publications.eai.eu/index.php/phat/article/view/4292