Mental Stress Classification from Brain Signals using MLP Classifier

Authors

DOI:

https://doi.org/10.4108/eetpht.9.4341

Keywords:

Mental stress, Electroencephalogram, EEG, Healthcare, Classification, Multi-layer Perceptron, MLP, Brain Signal

Abstract

INTRODUCTION: The most common and widespread mental condition that unavoidably affects people's mood and conduct is stress. The physiological reaction to powerful emotional, intellectual, and physical obstacles might be viewed as stress. As a result, early stress detection can result in solutions for potential improvements and ultimate event suppression.

OBJECTIVES: To classify mental stress from the EEG signals of humans using an MLP classifier.

METHODS: We examine the EEG signal analysis techniques currently in use for detecting mental stress using Multi-layer Perceptron (MLP).

RESULTS: The suggested technique has a 95% classification accuracy performance.

CONCLUSION: In our study, the use of MLP classifiers for stress detection from EEG signals has shown promising results. The high accuracy and precision of the classifiers, as well as the informative nature of certain EEG frequency bands, suggest that this approach could be a valuable tool for stress detection and management.

Downloads

Download data is not yet available.

References

Arsalan, A., Majid, M., Butt, A. R., & Anwar, S. M. (2019). Classification of perceived mental stress using a commercially available EEG headband. IEEE journal of biomedical and health informatics, 23(6), 2257-2264. DOI: https://doi.org/10.1109/JBHI.2019.2926407

Asif, A., Majid, M., & Anwar, S. M. (2019). Human stress classification using EEG signals in response to music tracks. Computers in biology and medicine, 107, 182-196. DOI: https://doi.org/10.1016/j.compbiomed.2019.02.015

Attallah, O. (2020). An effective mental stress state detection and evaluation system using minimum number of frontal brain electrodes. Diagnostics, 10(5), 292. DOI: https://doi.org/10.3390/diagnostics10050292

Bird, J. J., Manso, L. J., Ribeiro, E. P., Ekart, A., & Faria, D. R. (2018, September). A study on mental state classification using eeg-based brain-machine interface. In 2018 international conference on intelligent systems (IS) (pp. 795-800). IEEE. DOI: https://doi.org/10.1109/IS.2018.8710576

Dave, S., Ambudkar, B., & Dave, N. (2022 May). Stress Analysis of Brainwave Using EEG Click. DOI: https://doi.org/10.22214/ijraset.2022.43448

Dimas, A. (2022). Classification of Electroencephalogram Generated by Brain for Analysis of Brain Wave Signals in Students Depression. International Journal of Engineering Technology and Natural Sciences, 4(2), 95-101. DOI: https://doi.org/10.46923/ijets.v4i2.155

Gaurav, A. R., & Kumar, V. (2018). EEG-metric based mental stress detection. Netw Biol, 8(1), 25-34.

Gedam, S., & Paul, S. (2021). A review on mental stress detection using wearable sensors and machine learning techniques. IEEE Access, 9, 84045-84066. DOI: https://doi.org/10.1109/ACCESS.2021.3085502

Hayashi, H., & Tsuji, T. (2022). Human–Machine Interfaces Based on Bioelectric Signals: A Narrative Review with a Novel System Proposal. IEEJ Transactions on Electrical and Electronic Engineering, 17(11), 1536-1544. DOI: https://doi.org/10.1002/tee.23646

Katmah, R., Al-Shargie, F., Tariq, U., Babiloni, F., Al-Mughairbi, F., & Al-Nashash, H. (2021). A review on mental stress assessment methods using EEG signals. Sensors, 21(15), 5043. DOI: https://doi.org/10.3390/s21155043

Khosrowabadi, R., Quek, C., Ang, K. K., Tung, S. W., & Heijnen, M. (2011, July). A Brain-Computer Interface for classifying EEG correlates of chronic mental stress. In The 2011 international joint conference on neural networks (pp. 757-762). IEEE. DOI: https://doi.org/10.1109/IJCNN.2011.6033297

Lekshmi, S. S., Selvam, V., & Rajasekaran, M. P. (2014, April). EEG signal classification using principal component analysis and wavelet transform with neural network. In 2014 International Conference on Communication and Signal Processing (pp. 687-690). IEEE. DOI: https://doi.org/10.1109/ICCSP.2014.6949930

Manjunatha Siddappa, D. K. A Cognitive Approach towards Measuring Effectiveness of Meditation Using Enobio-8 EEG Device. European Journal of Molecular & Clinical Medicine, 7(08), 2020.

Rajendran, V. G., Jayalalitha, S., & Adalarasu, K. (2022). EEG Based Evaluation of Examination Stress and Test Anxiety Among College Students. Irbm, 43(5), 349-361. DOI: https://doi.org/10.1016/j.irbm.2021.06.011

Saeed, S. M. U., Anwar, S. M., Khalid, H., Majid, M., & Bagci, U. (2020). EEG based classification of long-term stress using psychological labeling. Sensors, 20(7), 1886. DOI: https://doi.org/10.3390/s20071886

Samarpita, S., & Satpathy, R. N. (2022, October). Applications of Machine Learning in Healthcare: An Overview. In 2022 1st IEEE International Conference on Industrial Electronics: Developments & Applications (ICIDeA) (pp. 51-56). IEEE. DOI: https://doi.org/10.1109/ICIDeA53933.2022.9970177

Shakya, N., DUBEY, R., & Shrivastava, L. (2021). Stress Detection using EEG Signal Based on Fast Walsh Hadamard transform and Voting Classifier. DOI: https://doi.org/10.21203/rs.3.rs-782483/v1

Sharma, R., & Chopra, K. (2020). EEG signal analysis and detection of stress using classification techniques. Journal of Information and Optimization Sciences, 41(1), 229-238. DOI: https://doi.org/10.1080/02522667.2020.1714187

Sharma, S., Singh, G., & Sharma, M. (2021). A comprehensive review and analysis of supervised-learning and soft computing techniques for stress diagnosis in humans. Computers in Biology and Medicine, 134, 104450. DOI: https://doi.org/10.1016/j.compbiomed.2021.104450

Shaw, R., & Patra, B. K. (2022). Classifying students based on cognitive state in flipped learning pedagogy. Future Generation Computer Systems, 126, 305-317. DOI: https://doi.org/10.1016/j.future.2021.08.018

Suryawanshi, R., & Vanjale, S. (2023). Brain Activity Monitoring for Stress Analysis through EEG Dataset using Machine Learning. International Journal of Intelligent Systems and Applications in Engineering, 11(1s), 236-240.

Zhang, Y., Wang, Q., Chin, Z. Y., & Ang, K. K. (2020, July). Investigating different stress-relief methods using Electroencephalogram (EEG). In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 2999-3002). IEEE. DOI: https://doi.org/10.1109/EMBC44109.2020.9175900

Downloads

Published

09-11-2023

How to Cite

1.
Samarpita S, Satpathy R, Kumar Mishra P, Narayan Panda A. Mental Stress Classification from Brain Signals using MLP Classifier. EAI Endorsed Trans Perv Health Tech [Internet]. 2023 Nov. 9 [cited 2024 Nov. 23];9. Available from: https://publications.eai.eu/index.php/phat/article/view/4341