Harnessing the Power of Ensemble Machine Learning for the Heart Stroke Classification

Authors

  • Purnima Pal Kamla Nehru Institute of Technology
  • Manju Nandal Noida Institute of Engineering and Technology
  • Srishti Dikshit Dr. C. V. Raman University image/svg+xml
  • Aarushi Thusu Noida Institute of Engineering and Technology
  • Harsh Vikram Singh Kamla Nehru Institute of Technology

DOI:

https://doi.org/10.4108/eetpht.9.4617

Keywords:

Ensemble Machine Learning, Machine Learning, Performance Metrics, Stroke Prediction

Abstract

A heart stroke, also known as a myocardial infarction or heart attack, is a critical medical condition that arises when there is an obstruction in the coronary arteries that provide blood to the heart muscles. This blockage results in a diminished flow of blood and oxygen to a specific area of the heart. This abrupt interruption initiates a gradual sequence of heart muscle damage, which can lead to varying degrees of functional impairment. The severity of these impairments is primarily determined by the precise location of the heart muscle affected. Therefore, it is of utmost importance to identify the warning signs and symptoms of a stroke as soon as possible. This is the objective of this paper is to early recognition and prompt action can significantly improve the chances of a healthy and fulfilling life following a stroke. In this research work, the Stroke dataset is pre-processed and on pre-processed dataset machine learning and ensemble machine learning techniques were employed to develop and assess several models aimed at creating a stable framework for predicting the enduring stroke risk. And various matrices like accuracy, F1 score, ROC, precision, and recall are calculated. Among all models, AdaBoost model demonstrated exceptional performance validated through multiple metrics, including Precision, AUC, recall, accuracy, and F1-measure. The results underscored superiority of the AdaBoost classification method, achieving an impressive Accuracy of 99%. AdaBoost model may serve as a stable framework for predicting enduring stroke risk, emphasizing its potential utility in clinical settings for identifying individuals at higher risk of experiencing a stroke.

Downloads

Download data is not yet available.

References

Gorelick, P.B., Scuteri, A., Black, S.E., DeCarli, C., Greenberg, S.M., Iadecola, C., Launer, L.J., Laurent, S., Lopez, O.L., Nyenhuis, D., Petersen, R.C., Schneider, J.A., Tzourio, C., Arnett, D.K., Bennett, D.A., Chui, H.C., Higashida, R.T., Lindquist, R., Nilsson, P.M., Roman, G.C., Sellke, F.W., Seshadri, S.: Vascular Contributions to Cognitive Impairment and Dementia: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 42, 2672–2713 (2011). https://doi.org/10.1161/STR.0b013e3182299496. DOI: https://doi.org/10.1161/STR.0b013e3182299496

Das, M.C., Liza, F.T., Pandit, P.P., Tabassum, F., Mamun, M.A., Bhattacharjee, S., Kashem, M.S.B.: A comparative study of machine learning approaches for heart stroke prediction. In: 2023 International Conference on Smart Applications, Communications and Networking (SmartNets). pp. 1–6. IEEE, Istanbul, Turkiye (2023). https://doi.org/10.1109/SmartNets58706.2023.10216049. DOI: https://doi.org/10.1109/SmartNets58706.2023.10216049

Learn about Stroke: . [(accessed on 25 May 2022)]. Available online: https://www.world-stroke.org/world-stroke-day-campaign/why-stroke-matters/learn-about-stroke.

European Stroke Initiative Executive Committee, EUSI Writing Committee, Olsen, T.S., Langhorne, P., Diener, H.C., Hennerici, M., Ferro, J., Sivenius, J., Wahlgren, N.G., Bath, P.: European Stroke Initiative Recommendations for Stroke Management-update 2003. Cerebrovasc Dis. 16, 311–337 (2003). https://doi.org/10.1159/000072554. DOI: https://doi.org/10.1159/000072554

Emon, M.U., Keya, M.S., Meghla, T.I., Rahman, Md.M., Mamun, M.S.A., Kaiser, M.S.: Performance Analysis of Machine Learning Approaches in Stroke Prediction. In: 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA). pp. 1464–1469. IEEE, Coimbatore, India (2020). https://doi.org/10.1109/ICECA49313.2020.9297525. DOI: https://doi.org/10.1109/ICECA49313.2020.9297525

Dev, S., Wang, H., Nwosu, C.S., Jain, N., Veeravalli, B., John, D.: A predictive analytics approach for stroke prediction using machine learning and neural networks. Healthcare Analytics. 2, 100032 (2022). https://doi.org/10.1016/j.health.2022.100032. DOI: https://doi.org/10.1016/j.health.2022.100032

Uttam, A.K.: Analysis of Uneven Stroke Prediction Dataset using Machine Learning. In: 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). pp. 1209–1213. IEEE, Madurai, India (2022). https://doi.org/10.1109/ICICCS53718.2022.9788309. DOI: https://doi.org/10.1109/ICICCS53718.2022.9788309

Khosla, A., Cao, Y., Lin, C.C.-Y., Chiu, H.-K., Hu, J., Lee, H.: An integrated machine learning approach to stroke prediction. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 183–192. ACM, Washington DC USA (2010). https://doi.org/10.1145/1835804.1835830. DOI: https://doi.org/10.1145/1835804.1835830

Paikaray, D., Mehta, A.K.: An Extensive Approach Towards Heart Stroke Prediction Using Machine Learning with Ensemble Classifier. In: Dua, M., Jain, A.K., Yadav, A., Kumar, N., and Siarry, P. (eds.) Proceedings of the International Conference on Paradigms of Communication, Computing and Data Sciences. pp. 767–777. Springer Singapore, Singapore (2022). https://doi.org/10.1007/978-981-16-5747-4_66. DOI: https://doi.org/10.1007/978-981-16-5747-4_66

Kumar, K.L., Reddy, B.E.: Heart Disease Detection System Using Gradient Boosting Technique. In: 2021 International Conference on Computing Sciences (ICCS). pp. 228–233. IEEE, Phagwara, India (2021). https://doi.org/10.1109/ICCS54944.2021.00052. DOI: https://doi.org/10.1109/ICCS54944.2021.00052

Singh, M.S., Choudhary, P., Thongam, K.: A Comparative Analysis for Various Stroke Prediction Techniques. In: Nain, N., Vipparthi, S.K., and Raman, B. (eds.) Computer Vision and Image Processing. pp. 98–106. Springer Singapore, Singapore (2020). https://doi.org/10.1007/978-981-15-4018-9_9. DOI: https://doi.org/10.1007/978-981-15-4018-9_9

Bandi, V., Bhattacharyya, D., Midhunchakkravarthy, D.: Prediction of Stroke Severity Using Machine Learning. RIA. 34, 753–761 (2020). https://doi.org/10.18280/ria.340609. DOI: https://doi.org/10.18280/ria.340609

Kaur, M., Sakhare, S.R., Wanjale, K., Akter, F.: Early Stroke Prediction Methods for Prevention of Strokes. Behavioural Neurology. 2022, 1–9 (2022). https://doi.org/10.1155/2022/7725597. DOI: https://doi.org/10.1155/2022/7725597

Govindarajan, P., Soundarapandian, R.K., Gandomi, A.H., Patan, R., Jayaraman, P., Manikandan, R.: Classification of stroke disease using machine learning algorithms. Neural Comput & Applic. 32, 817–828 (2020). https://doi.org/10.1007/s00521-019-04041-y. DOI: https://doi.org/10.1007/s00521-019-04041-y

Sailasya, G., Kumari, G.L.A.: Analyzing the Performance of Stroke Prediction using ML Classification Algorithms. IJACSA. 12, (2021). https://doi.org/10.14569/IJACSA.2021.0120662. DOI: https://doi.org/10.14569/IJACSA.2021.0120662

Chin, C.-L., Lin, B.-J., Wu, G.-R., Weng, T.-C., Yang, C.-S., Su, R.-C., Pan, Y.-J.: An automated early ischemic stroke detection system using CNN deep learning algorithm. In: 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST). pp. 368–372. IEEE, Taichung (2017). https://doi.org/10.1109/ICAwST.2017.8256481. DOI: https://doi.org/10.1109/ICAwST.2017.8256481

Li, X., Bian, D., Yu, J., Li, M., Zhao, D.: Using machine learning models to improve stroke risk level classification methods of China national stroke screening. BMC Med Inform Decis Mak. 19, 261 (2019). https://doi.org/10.1186/s12911-019-0998-2. DOI: https://doi.org/10.1186/s12911-019-0998-2

Stroke Prediction Dataset: https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset.

Al-Zubaidi, H., Dweik, M., Al-Mousa, A.: Stroke Prediction Using Machine Learning Classification Methods. In: 2022 International Arab Conference on Information Technology (ACIT). pp. 1–8. IEEE, Abu Dhabi, United Arab Emirates (2022). https://doi.org/10.1109/ACIT57182.2022.10022050. DOI: https://doi.org/10.1109/ACIT57182.2022.10022050

Singh, D., Singh, B.: Feature wise normalization: An effective way of normalizing data. Pattern Recognition. 122, 108307 (2022). https://doi.org/10.1016/j.patcog.2021.108307. DOI: https://doi.org/10.1016/j.patcog.2021.108307

Pawlovsky, A.P.: An ensemble based on distances for a kNN method for heart disease diagnosis. In: 2018 International Conference on Electronics, Information, and Communication (ICEIC). pp. 1–4. IEEE, Honolulu, HI, USA (2018). https://doi.org/10.23919/ELINFOCOM.2018.8330570. DOI: https://doi.org/10.23919/ELINFOCOM.2018.8330570

Çınar, A., Tuncer, S.A.: Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks. Computer Methods in Biomechanics and Biomedical Engineering. 24, 203–214 (2021). https://doi.org/10.1080/10255842.2020.1821192. DOI: https://doi.org/10.1080/10255842.2020.1821192

Majumder, A.B., Gupta, S., Singh, D.: An Ensemble Heart Disease Prediction Model Bagged with Logistic Regression, Naïve Bayes and K Nearest Neighbour. J. Phys.: Conf. Ser. 2286, 012017 (2022). https://doi.org/10.1088/1742-6596/2286/1/012017. DOI: https://doi.org/10.1088/1742-6596/2286/1/012017

Yang, Z., Liang, Y., Zhang, H., Chai, H., Zhang, B., Peng, C.: Robust Sparse Logistic Regression With the $L_{q}$ ($0 < text{q} < 1$ ) Regularization for Feature Selection Using Gene Expression Data. IEEE Access. 6, 68586–68595 (2018). https://doi.org/10.1109/ACCESS.2018.2880198. DOI: https://doi.org/10.1109/ACCESS.2018.2880198

Babu, G.H., Jayasree, G., Ashika, C., Ahalya, V., Niroopa, K.A.: Heart Disease Prediction System Using Random Forest Technique. IJRASET. 11, 1133–1141 (2023). https://doi.org/10.22214/ijraset.2023.48764. DOI: https://doi.org/10.22214/ijraset.2023.48764

Li, R., Shen, S., Chen, G., Xie, T., Ji, S., Zhou, B., Wang, Z.: Multilevel Risk Prediction of Cardiovascular Disease based on Adaboost+RF Ensemble Learning. IOP Conf. Ser.: Mater. Sci. Eng. 533, 012050 (2019). https://doi.org/10.1088/1757-899X/533/1/012050. DOI: https://doi.org/10.1088/1757-899X/533/1/012050

Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 21, 6 (2020). https://doi.org/10.1186/s12864-019-6413-7. DOI: https://doi.org/10.1186/s12864-019-6413-7

Mishra, I., Mohapatra, S.: An enhanced approach for analyzing the performance of heart stroke prediction with machine learning techniques. Int. j. inf. tecnol. 15, 3257–3270 (2023). https://doi.org/10.1007/s41870-023-01321-8. DOI: https://doi.org/10.1007/s41870-023-01321-8

Sharma, C., Sharma, S., Kumar, M., Sodhi, A.: Early Stroke Prediction Using Machine Learning. In: 2022 International Conference on Decision Aid Sciences and Applications (DASA). pp. 890–894. IEEE, Chiangrai, Thailand (2022). https://doi.org/10.1109/DASA54658.2022.9765307. DOI: https://doi.org/10.1109/DASA54658.2022.9765307

Rana, C., Chitre, N., Poyekar, B., Bide, P.: Stroke Prediction Using Smote-Tomek and Neural Network. In: 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). pp. 1–5. IEEE, Kharagpur, India (2021). https://doi.org/10.1109/ICCCNT51525.2021.9579763. DOI: https://doi.org/10.1109/ICCCNT51525.2021.9579763

Downloads

Published

15-12-2023

How to Cite

1.
Pal P, Nandal M, Dikshit S, Thusu A, Vikram Singh H. Harnessing the Power of Ensemble Machine Learning for the Heart Stroke Classification. EAI Endorsed Trans Perv Health Tech [Internet]. 2023 Dec. 15 [cited 2024 Dec. 27];9. Available from: https://publications.eai.eu/index.php/phat/article/view/4617