Speckle Noise Removal from Biomedical MRI Images and Classification by Multi-Support Vector Machine

Authors

  • B Hemalatha Bharath Institute of Higher Education and Research
  • B Karthik Bharath Institute of Higher Education and Research
  • C V Krishna Reddy Nalla Narasimha Reddy Education Society's Group of Institutions

DOI:

https://doi.org/10.4108/eetpht.10.5076

Keywords:

Signal to Noise Ratio, Speckle, MRI Images, Classification, Mean Filter, Multi SVM

Abstract

INTRODUCTION: Image Processing (IP) methods play a vital role in medical images for diagnosing and predicting illness, as well as monitoring the patient's progress. The IP methods are utilized in many applications for example in the field of medicine.

OBJECTIVES: The images that are obtained by the MRI magnetic Resonance imaging and x rays are analyzed with the help of image processing.

METHODS: This application is very costly to the patient. Because of the several non-idealities in the image process, medical images are frequently tainted by impulsive, multiplicative, and addictive noise.

RESULTS: By replacing some of the original image's pixels with new ones that have luminance values which are less than the allowed dynamic luminance range, noise frequently affects medical images.

CONCLUSION: In this research work, the Speckle type noises are eliminated with the help of Mean Filter (MF) and classify the images using Multi-SVM classifier.  The entire system developed using python programming.

Downloads

Download data is not yet available.

References

Jayachitra, S, Prasanth, A: Multi-feature analysis for automated brain stroke classification using weighted Gaussian naïve Bayes classifier. journal of circuits, systems and computers. 2021; Vol. 30, pp. 1–19. DOI: https://doi.org/10.1142/S0218126621501784

Sekar J, Aruchamy, P, Lebbe A:. An efficient clinical support system for heart disease prediction using TANFIS classifier. Computational Intelligence. 2022; Vol. 38:pp.610-640. DOI: https://doi.org/10.1111/coin.12487

Braveen, M, Nachiyappan, S, Seetha, R: ALBAE feature extraction based lung pneumonia and cancer classification. Soft Computing. 2023; pp. 1-14. DOI: https://doi.org/10.1007/s00500-023-08453-w

Ayana G, Dese K, Raj H, Krishnamoorthy J, Kwa T. De-Speckling Breast Cancer Ultrasound Images Using a Rotationally Invariant Block Matching Based Non-Local Means (RIBM-NLM) Method. Diagnostics (Basel).2022; 12(4):862. DOI: https://doi.org/10.3390/diagnostics12040862

S R S Chakravarthy, H Rajaguru. A Novel Noise Removal in Digital Mammograms based on Statistical Algorithms. International Conference on Advances in Computing and Communication Engineering (ICACCE). 2019;14(2):1-4. DOI: https://doi.org/10.1109/ICACCE46606.2019.9079990

Huang Shuoa, Zhou Pinga, Shi Haoa , Sun Yua, Wan Suirena.Image Speckle Noise Denoising by a Multi-Layer Fusion Enhancement Method based on Block Matching and 3D Filtering. International Laboratory for Children’s Medical Imaging Research, School of Biological Sciences and Medical Engineering.2020;17(4):1-17. DOI: https://doi.org/10.1080/13682199.2019.1612589

Melaku Bitew, Haile,Ayodeji, Olalekan Salau, Icon,Belay Enyew,Abebech, Jenber Belay. Detection and classification of gastrointestinal disease using convolutional neural network and SVM. Cogent Engineering.2022;9(1):1-14. DOI: https://doi.org/10.1080/23311916.2022.2084878

Abdulaziz Saleh, Yeslem Bin-Habtoor, Salem Saleh Al-amri. Removal Speckle Noise from Medical Image Using Image Processing Techniques. International Journal of Computer Science and Information Technologies.2016;7 (1):375-377.

K Karthikeyan, C.Chandrasekar. Speckle Noise Reduction of Medical Ultrasound Images using Bayesshrink Wavelet Threshold. International Journal of Computer Applications 2011;22(9):8-14. DOI: https://doi.org/10.5120/2614-3646

Ahmed S.Bafaraj. Performance Analysis of Best Speckle Filter for Noise Reduction in Ultrasound Medical Images. International Journal of Applied Engineering Research.2019;14(6):1340-1351.

S LeenaNesamani S, Nirmala SugirthaRajini, M S. Josphine, J Jacinth Salome. Deep Learning-Based Mammogram Classification for Breast Cancer Diagnosis Using Multi-level Support Vector Machine. Springer Lecture Notes in Electrical Engineering.2021;700(2):371-383. DOI: https://doi.org/10.1007/978-981-15-8221-9_35

Nalin Kumar , M Nachamai. Noise Removal and Filtering Techniques used in Medical Images. Oriental Journal Of Computer Science & Technology.2017;10(1):103-113. DOI: https://doi.org/10.13005/ojcst/10.01.14

Pichid Kittisuwan. Speckle Noise Reduction of Medical Imaging via Logistic Density in Redundant Wavelet Domain. International Journal on Artificial Intelligence Tools. 2018;27(2):45-52. DOI: https://doi.org/10.1142/S0218213018500069

S Rameshkumar, J AnishJafrinThilak, P Suresh, S Sathishkumar,N Subraman. Speckle Noise Removal in MRI Scan Image Using WB – Filter. International Journal of Innovative Research in Science, Engineering and Technology.2018; 28(1):1079- 21083.

S Anitha ,L Kola, P Sushma, S Archana. Analysis of filtering and novel technique for noise removal in MRI and CT images. IEEE International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT). 2017;2018(2):825-827. DOI: https://doi.org/10.1109/ICEECCOT.2017.8284618

B Deepa, M G Sumithra. Comparative analysis of noise removal techniques in MRI brain images. IEEE International Conference on Computational Intelligence and Computing Research (ICCIC).2015;25(4):1-4. DOI: https://doi.org/10.1109/ICCIC.2015.7435737

Rajaguru Harikumar, Chakravarthy Sannasi. Efficient Denoising Framework for Mammogram Images with a New Impulse Detector and Non-Local Means. Asian Pacific Journal of Cancer Prevention.2020;21(4):179-183. DOI: https://doi.org/10.31557/APJCP.2020.21.1.179

Downloads

Published

08-02-2024

How to Cite

1.
Hemalatha B, Karthik B, Krishna Reddy CV. Speckle Noise Removal from Biomedical MRI Images and Classification by Multi-Support Vector Machine. EAI Endorsed Trans Perv Health Tech [Internet]. 2024 Feb. 8 [cited 2024 May 26];10. Available from: https://publications.eai.eu/index.php/phat/article/view/5076