Optimising Deep Neural Networks for Tumour Diagnosis Algorithms Based on Improved MRFO Algorithm

Authors

  • Binbin Han Tianjin Tianshi College
  • Fuliang Zhang Tianjin Nankai Hospital image/svg+xml
  • Zhenyun Chang Tianjin Tianshi College
  • Fang Feng Tianjin Tianshi College

DOI:

https://doi.org/10.4108/eetpht.10.5147

Keywords:

tumour diagnosis algorithms,, adaptive control parameter strategy, distribution estimation strategy, manta ray foraging optimisation algorithm, deep confidence networks

Abstract

INTRODUCTION: Cancer has become one of the most prevalent diseases with the highest mortality rate in the world, and timely detection and early acceptance of medical therapeutic interventions are effective means of controlling the progression of cancer patients and improving their post-intervention outcomes.

OBJECTIVES: To make the defects of incomplete features, low accuracy and low real-time performance of current tumour diagnosis methods.

METHODS: This paper proposes a tumour diagnosis method based on the improved MRFO algorithm to improve the optimization process of DBN network parameters. Firstly, the diagnostic features are extracted by analysing the tumour diagnosis identification problem; then, the manta ray foraging optimization algorithm is improved by combining the good point set initialization strategy, the adaptive control parameter strategy and the distribution estimation strategy, and the tumour diagnostic model based on the improved manta ray foraging optimization algorithm to optimize the parameters of the depth confidence network is constructed; finally, the high accuracy and real-time performance of the proposed method are verified by the analysis of simulation experiments.

RESULTS: The results show that the proposed method improves the accuracy of the diagnostic model.

CONLUSION: Addresses the problem of poor accuracy and real-time availability of tumour diagnostic methods.

Downloads

Download data is not yet available.

References

Kirchweger P , Wundsam H V , Rumpold H .Circulating tumour DNA for diagnosis, prognosis and treatment of gastrointestinal malignancies[J].World journal of clinical oncology, 2022(6). DOI: https://doi.org/10.5306/wjco.v13.i6.473

Deng, Dajun. World Cancer Report 2020 - Adapting Cancer Prevention Responses to New Trends in Cancer Epidemics. Electronic Journal of Comprehensive Cancer Therapy[J]. 2002(03), 27-32.

Park W , Maeng S W , Mok J W , Choi M, Cha H J, Joo C K. Hydrogel Microneedles Extracting Exosomes for Early Detection of Colorectal Cancer[J]. Biomacromolecules, 2023. DOI: https://doi.org/10.1021/acs.biomac.2c01449

Dolganova I N , Varvina D A , Shikunova I A , Alekseeva A I, Karalkin P A, Kuznetsov M R. Proof of concept for the sapphire scalpel combining tissue dissection and optical diagnosis[J].Lasers in surgery and medicine. 2022(4):54. DOI: https://doi.org/10.1002/lsm.23509

Aiwen S .Clinical role of serum tumour markers SCC, NSE, CA 125, CA 19-9, and CYFRA 21-1 in patients with lung cancer[J]. .

Li J , Yan Y , Wang G , Huang Z. Hypoxia-inducible factor-2αand its missense mutations:potential role in HCC diagnosis,progression,and prognosis and underlying mechanism[J]. Oncology and Translational Medicine:English Edition, 2022, 8(6):267-275. DOI: https://doi.org/10.1007/s10330-022-0598-8

Pinto G V , Senthilkumar K , Rai P , Kabekkodu S P, Karunasagar I, Kumar B K. Current methods for the diagnosis of leptospirosis: Issues and challenges[J] . .Journal of Microbiological Methods, 2022, 195:106438. DOI: https://doi.org/10.1016/j.mimet.2022.106438

Nian-Lun Z , Qin K , Li-Ying B , Bing-Xue J. The value of combined detection of serum tumor markers in the diagnosis and prognosis of non-small cell lung cancer[J].Chinese Journal of Convalescent Medicine, 2023, 32(7):763-768.

Krzysztof Szymoński, Chmura U , Lipiec E , Adamek D. Vibrational spectroscopy-are we close to finding a solution for early pancreatic cancer diagnosis?[J]. World Journal of Gastroenterology:English Edition, 2023, 29(1):96-109. DOI: https://doi.org/10.3748/wjg.v29.i1.96

Tyler C , Neil M N , Alexis J , Sarah R, Erin W. The effects of educational interventions and the COVID-19 pandemic on the time to diagnosis in pediatric patients with primary central nervous system tumours[J].Neuro-Oncology Practice, 2023(5):5.

Zhang Y C , Li M , Jin Y M , Xu J X, Huang C C. Radiomics for differentiating tumor deposits from lymph node metastasis in rectal cancer[J]. World Journal of Gastroenterology: English Edition, 2022(029):028. DOI: https://doi.org/10.3748/wjg.v28.i29.3960

Minoshima A , Sugita S , Segawa K , Aoyama T, Ito M, Daimon F. Usefulness of cell block examination for the cytological diagnosis of thoracic SMARCA4- deficient undifferentiated tumour: a case report[J].Diagnostic cytopathology, 2023. DOI: https://doi.org/10.1002/dc.25116

Rakotoarivo T , Tomboravo C , Razakanaivo M , Raharisolo C, Rafaramino F. Advanced Cutaneous Scalp Eccrine Adenocarcinoma, Diagnosis and Treatment Challenges: a Case Report[J]. Cancer Therapy (English), 2023, 14(1):1-5. DOI: https://doi.org/10.4236/jct.2023.141001

Rodanthi Sfakiotaki M , Sergia Liasi B , Eleni Papaiakovou B , Vraka I, Vakaki M, Koumanidou C. Juvenile Granulosa Cell Tumor of the Testis: A Preoperative Approach of the Diagnosis with Ultrasound[J]. 2023, 7(4):409-411. DOI: https://doi.org/10.37015/AUDT.2023.220038

Farzahna M , Raal F J .Unravelling the Whipple Triad: Non-Islet Cell Tumor-Induced Hypoglycemia[J].JCEM Case Reports. 2024(2):2. DOI: https://doi.org/10.1210/jcemcr/luae006

Yan Y W , Liu X K , Zhang S X , Tian Q F. Real-world 10-year retrospective study of the guidelines for diagnosis and treatment of primary liver cancer in China[J]. World Journal of Gastrointestinal Oncology:English Edition(Electronic), 2023, 15(5):859-877. DOI: https://doi.org/10.4251/wjgo.v15.i5.859

Juan L. The Comparative Study on Common Breast Imaging Diagnosis Methods[J]. Foreign language edition: medicine and health, 2022(1):169-172.

Inoue F , Hirata D , Iwatate M , Hattori S, Fujita M, Sano W. New application of endocytoscope for histopathological diagnosis of colorectal lesions [J ]. World Journal of Gastrointestinal Endoscopy: English Edition (electronic version), 2022(008):014. DOI: https://doi.org/10.4253/wjge.v14.i8.495

Rossi R E , Elvevi A , Gallo C , Palermo A, Invernizzi P, Massironi S. Endoscopic techniques for diagnosis and treatment of gastroentero-pancreatic neuroendocrine neoplasms:Where we are[J]. World Journal of Gastroenterology: English Edition, 2022(026):028. DOI: https://doi.org/10.3748/wjg.v28.i26.3258

Asiri A A , Iqbal A , Ferzund J , Ali T, Aamir M, Alshamrani K A. A Novel Hybrid Machine Learning Approach for Classification of Brain Tumor Images[J]. Computers, Materials and Continuum (English), 2022.

Huang Z , Huang Z , Zhao Y , Zhao Y, Liu Y, Liu Y. AMF-Net: An adaptive multisequence fusing neural network for multi-modality brain tumor diagnosis[J]. Biomedical Signal Processing and Control, 2022, 72:103359-. DOI: https://doi.org/10.1016/j.bspc.2021.103359

Bibikova M , Fan J .Liquid biopsy for early detection of lung cancer[J]. Respiratory and Critical Care Medicine (English), 2023, 01(04):200-206. DOI: https://doi.org/10.1016/j.pccm.2023.08.005

Yin Z , Zhang J .Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights[J]. Neurocomputing, 2017, 260(oct.18):349-366. DOI: https://doi.org/10.1016/j.neucom.2017.05.002

Wang Qianhe,Li Renwang. Optimisation of low carbon turning parameters based on improved whale optimisation algorithm[J]. Modelling and Simulation, 2023, 12(6):10.

Wang X , Zhang W .The Janus of Protein Corona on nanoparticles for tumour targeting, immunotherapy and diagnosis[J].Journal of Controlled Release,. 2022, 345:832-850. DOI: https://doi.org/10.1016/j.jconrel.2022.03.056

Aiwen S .Clinical role of serum tumor markers SCC, NSE, CA 125, CA 19-9, and CYFRA 21-1 in patients with lung cancer[J].Laboratory Medicine, 2023(6). 6.

Katherine L , Fei D .The success rates of clinical cancer next-generation sequencing based on pathologic diagnosis: experience from a single academic laboratory[J].American Journal of Clinical Pathology, 2023(5):5.

Lin W C , Tsai C F , Zhong J R .Deep learning for missing value imputation of continuous data and the effect of data discretisation[J].Knowledge-Based Systems, 2022, 239:108079-. DOI: https://doi.org/10.1016/j.knosys.2021.108079

Weiguo Z, Zhengxin Z, Liying W. Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103300. DOI: https://doi.org/10.1016/j.engappai.2019.103300

Du J , Gao Y .Domain adaptation and Summary Distillation for Unsupervised Query Focused Summarization[J].IEEE Transactions on Knowledge and Data Engineering, 2023. DOI: https://doi.org/10.1109/TKDE.2023.3296441

Guo Jianyi,Fan Youping. Adaptive control strategy for VSG parameters based on improved particle swarm algorithm[J]. Journal of Electrical Machines and Control, 2022, 26(6):11.

Usman H M , Elshatshat R , El-Hag A H .Distribution Transformer Remaining Useful Life Estimation Considering Electric Vehicle Penetration[J].IEEE Transactions on Power Delivery, 2023. DOI: https://doi.org/10.1109/PESGM52003.2023.10252751

Downloads

Published

08-04-2024

How to Cite

1.
Han B, Zhang F, Chang Z, Feng F. Optimising Deep Neural Networks for Tumour Diagnosis Algorithms Based on Improved MRFO Algorithm. EAI Endorsed Trans Perv Health Tech [Internet]. 2024 Apr. 8 [cited 2024 Nov. 15];10. Available from: https://publications.eai.eu/index.php/phat/article/view/5147