A Survey on Impact of Internet of Medical Things Against Diabetic Foot Ulcer

Authors

  • R. Athi Vaishnavi Kalaignar Karunanidhi Institute of Technology
  • P Jegathesh Karpagam College of Engineering
  • M Jayasheela Kalaignar Karunanidhi Institute of Technology
  • K Mahalakshmi Kalaignar Karunanidhi Institute of Technology

DOI:

https://doi.org/10.4108/eetpht.10.5170

Keywords:

Diabetic Foot Ulcer, Classification, Smart Health, Smart analysis prediction, Detection, Internet of Medical Things

Abstract

INTRODUCTION: In this study, we explore the intricate domain of Diabetic Foot Ulcers (DFU) through the development of a comprehensive framework that encompasses diverse operational scenarios. The focus lies on the identification and classification assessment of diabetic foot ulcers, the implementation of smart health management strategies, and the collection, analysis, and intelligent interpretation of data related to diabetic foot ulcers. The framework introduces an innovative approach to predicting diabetic foot ulcers and their key characteristics, offering a technical solution for forecasting. The exploration delves into various computational strategies designed for intelligent health analysis tailored to patients with diabetic foot ulcers.

OBJECTIVES: The primary objective of this paper is to present a technical solution for forecasting diabetic foot ulcers, utilizing computational strategies for intelligent health analysis.

METHODS: Techniques derived from social network analysis are employed to conduct this research, focusing on diverse computational strategies geared towards intelligent health analysis for patients with diabetic foot ulcers. The study highlights methodologies addressing the unique challenges posed by diabetic foot ulcers, with a central emphasis on the integration of Internet of Medical Things (IoMT) in prediction strategies.

RESULTS: The main results of this paper include the proposal of IoMT-based computing strategies covering the entire spectrum of DFU analysis, such as localization, classification assessment, intelligent health management, and detection. The study also acknowledges the challenges faced by previous research, including low classification rates and elevated false alarm rates, and proposes automatic recognition approaches leveraging advanced machine learning techniques to enhance accuracy and efficacy.

CONCLUSION: The proposed IoMT-based computing strategies present a significant advancement in addressing the challenges associated with predicting diabetic foot ulcers. The integration of advanced machine learning techniques demonstrates promise in improving accuracy and efficiency in diabetic foot ulcer localization, marking a positive stride towards overcoming existing limitations in previous research.

Downloads

Download data is not yet available.

References

Akturk A, van Netten JJ, Vermeer M, Kruse RR, Schaper NC, van Gemert‐Pijnen LJ, van Baal JG. Improved outcomes in patients with diabetic foot ulcers despite differences in baseline characteristics. Diabet Foot Ulcers. 2021; 26(6):912-919. DOI: https://doi.org/10.1111/wrr.12976

Alshamrani M. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. J King Saud Univ-Comput Inf Sci. 2021; 34(8):4687-4701. DOI: https://doi.org/10.1016/j.jksuci.2021.06.005

Anjum N, Asif A, Kiran M, Jabeen F, Yang Z, Huang C, Mohamed EM. Intelligent covid-19 forecasting, diagnoses and monitoring systems: A survey. IEEE Communications Surveys & Tutorials. 2021; 14(8):1-24. DOI: https://doi.org/10.36227/techrxiv.15172488

Baras MH, Bin-Hameed EA. Estimating the Efficiency of Phagocytic Neutrophil Cells and Studying Its Risk Factors Among Diabetic Foot Ulcers. In J Phys: Conf Ser. 2021; 1900(1):1-8. DOI: https://doi.org/10.1088/1742-6596/1900/1/012006

Bus SA, Wouter B, van Baal JG, Busch-Westbroek TE, Nollet F, van Netten JJ. Effectiveness of at-home skin temperature monitoring in reducing the incidence of foot ulcer recurrence in people with diabetes: a multicenter randomized controlled trial (DIATEMP). BMJ Open Diab Res Care. 2021; 9(1):1-11. DOI: https://doi.org/10.1136/bmjdrc-2021-002392

Cassidy B, Reeves ND, Pappachan JM, Gillespie D, O'Shea C, Rajbhandari S, Yap MH. The DFUC 2020 dataset: Analysis towards diabetic foot ulcer detection. Touch REV Endocrinol. 2021; 17(1):5-11. DOI: https://doi.org/10.17925/EE.2021.17.1.5

Chiu A, Sharma D, Zhao F. Tissue Engineering-Based Strategies for Diabetic Foot Ulcer Management. Adv Wound Care. 2023; 12(3):145-167. DOI: https://doi.org/10.1089/wound.2021.0081

Gershater MA, Apelqvist J. Elderly individuals with diabetes and foot ulcer have a probability for healing despite extensive comorbidity and dependency. Expert Rev Pharmacoecon Outcomes Res. 2021; 21(2):277-284. DOI: https://doi.org/10.1080/14737167.2020.1773804

Gokalgandhi D, Kamdar L, Shah N, Mehendale N. A Review of Smart Technologies Embedded in Shoes. J Med Syst. 2020; 44(9):1-9. DOI: https://doi.org/10.1007/s10916-020-01613-7

Hassan H, Ren Z, Zhou C, Khan MA, Pan Y, Zhao J, Huang B. Supervised and weakly supervised deep learning models for COVID-19 CT diagnosis: A systematic review. Comput Methods Programs Biomed. 2022; 218(1):1-18. DOI: https://doi.org/10.1016/j.cmpb.2022.106731

Haque F, Reaz MB, Chowdhury ME, Hashim FH, Arsad N, Ali SH. Diabetic sensorimotor polyneuropathy severity classification using adaptive neuro fuzzy inference system. IEEE Access. 2021; 9(1):7618-7631. DOI: https://doi.org/10.1109/ACCESS.2020.3048742

Islam MK, Kaushal C, AL AMIN MD. Smart Home-Healthcare for Skin Lesions Classification with IoT Based Data Collection Device. IEEE Access. 2021; 4(1):1-11. DOI: https://doi.org/10.36227/techrxiv.16870729.v1

Karthiyayini R, Shenbagavadivu N. Retinal image analysis for ocular disease prediction using rule mining algorithms. Interdiscip Sci Comput Life Sci. 2021; 13(3):451-462. DOI: https://doi.org/10.1007/s12539-020-00373-9

Kuang B, Pena G, Szpak Z, Edwards S, Battersby R, Cowled P, Fitridge R. Assessment of a smartphone‐based application for diabetic foot ulcer measurement. Wound Repair Regen. 2021; 29(3):460-465. DOI: https://doi.org/10.1111/wrr.12905

Liang X, Alshemmary EN, Ma M, Liao S, Zhou W, Lu Z. Automatic Diabetic Foot Prediction Through Fundus Images by Radiomics Features. IEEE Access. 2021; 9(1):92776-92787. DOI: https://doi.org/10.1109/ACCESS.2021.3093358

Lu ZX, Qian P, Bi D, Ye ZW, He X, Zhao YH, Zhu ZL. Application of AI and IoT in Clinical Medicine: Summary and Challenges. Curr Med Sci. 2021; 41(6):1134-1150. DOI: https://doi.org/10.1007/s11596-021-2486-z

Mukhtar H, Rubaiee S, Krichen M, Alroobaea R. An IoT framework for screening of COVID-19 using real-time data from wearable sensors. Int J Environ Res Public Health. 2021; 18(8):1-17. DOI: https://doi.org/10.3390/ijerph18084022

Nag U, Upadhayay M, Gupta T. Detecting Diabetic Foot Complications using Infrared Thermography and Machine Learning. Int Conf Graph Signal Process. 2021; 1(1):41-46. DOI: https://doi.org/10.1145/3474906.3474919

Najafi B, Mishra R. Harnessing digital health technologies to remotely manage diabetic foot syndrome: a narrative review. Medicina. 2021; 57(4):377-384. DOI: https://doi.org/10.3390/medicina57040377

Nguyen TT, Ding D, Wolter WR, Pérez RL, Champion MM, Mahasenan KV, Chang M. Validation of matrix metalloproteinase-9 (MMP-9) as a novel target for treatment of diabetic foot ulcers in humans and discovery of a potent and selective small-molecule MMP-9 inhibitor that accelerates healing. J Med Chem. 2018; 61(19):8825-8837. DOI: https://doi.org/10.1021/acs.jmedchem.8b01005

Ostadabbas S, Nourani M, Saeed A, Yousefi R, Pompeo M. A knowledge-based modeling for plantar pressure image reconstruction. IEEE Trans Biomed Eng. 2014; 61(10):2538-2549. DOI: https://doi.org/10.1109/TBME.2014.2322993

Paun G, Neagu E, Albu C, Savin S, Radu GL. In vitro evaluation of antidiabetic and anti-inflammatory activities of polyphenolic-rich extracts from anchusa officinalis and melilotus officinalis. ACS Omega. 2020; 5(22):13014-13022. DOI: https://doi.org/10.1021/acsomega.0c00929

Prasanth A, Jayachitra, Hariprasath, Benazir R. AI Enabled Internet of Medical Things in Smart Healthcare, AI Models for Blockchain-Based Intelligent Networks in IoT Systems: Concepts, Methodologies, Tools, and Applications. 2023; 6(1):141-161. DOI: https://doi.org/10.1007/978-3-031-31952-5_7

Peng Z, Nguyen TT, Song W, Anderson B, Wolter WR, Schroeder VA, Chang. Selective MMP-9 inhibitor (R)-ND-336 alone or in combination with linezolid accelerates wound healing in infected diabetic mice. ACS Pharmacol Transl Sci. 2020; 4(1):107-117. DOI: https://doi.org/10.1021/acsptsci.0c00104

Philimon SP, Huong AKC. Laser Speckle Integrated Multispectral Imaging System for In-Vivo Assessment of Diabetic Foot Ulcer Healing: A Clinical Study. IEEE Access. 2021; 9(1):23726-23736. DOI: https://doi.org/10.1109/ACCESS.2021.3055221

Preti D, Baraldi PG, Saponaro G, Romagnoli R, Aghazadeh Tabrizi M, Baraldi S, Varani K. Design, synthesis, and biological evaluation of novel 2-((2-(4-(substituted) phenylpiperazin-1-yl)ethyl)amino)-5′-N-ethylcarboxamidoadenosines as potent and selective agonists of the A2A adenosine receptor. J Med Chem. 2015; 58(7):3253-3267. DOI: https://doi.org/10.1021/acs.jmedchem.5b00215

Priyadharsini K, Kumar JD, Deepakkumar A, Chandran S, Babu CG. A Novel System for Surgical Gloves Removing and Reusing-IoT Approach. In IOP Conf Ser: Mater Sci Eng. 2021; 1059(1):1-13. DOI: https://doi.org/10.1088/1757-899X/1059/1/012071

Qayyum A, Benzinou A, Mazher M, Meriaudeau F. Efficient Multi-model Vision Transformer Based on Feature Fusion for Classification of DFUC2021 Challenge. In Diabet Foot Ulcers Grand Chall. 2021; 1(1):62-75. DOI: https://doi.org/10.1007/978-3-030-94907-5_5

Raghavan JV, Dorai VK, Sagar SK, Sivaraman A, Jhunjhunwala S. Immunomodulatory Bandage for Accelerated Healing of Diabetic Wounds. ACS Bio Med Chem Au. 2022; 2(1):409-418. DOI: https://doi.org/10.1021/acsbiomedchemau.1c00063

Rasheed J, Hameed AA, Djeddi C, Jamil A, Al-Turjman F. A machine learning-based framework for diagnosis of COVID-19 from chest X-ray images. Interdiscip Sci Comput Life Sci. 2021; 13(1):103-117. DOI: https://doi.org/10.1007/s12539-020-00403-6

Raviglione A, Reif R, Macagno M, Vigano D, Schram J, Armstrong D. Real-time smart textile-based system to monitor pressure offloading of diabetic foot ulcers. J Diabetes Sci Technol. 2017; 11(5):894-898. DOI: https://doi.org/10.1177/1932296817695339

Scebba G, Zhang J, Catanzaro S, Mihai C, Distler O, Berli M, Karlen W. Detect-and-segment: A deep learning approach to automate wound image segmentation. Inform Med Unlocked. 2022; 29(1):1-9. DOI: https://doi.org/10.1016/j.imu.2022.100884

Schollemann F, Kunczik J, Dohmeier H, Pereira CB, Follmann A, Czaplik M. Infection Probability Index: Implementation of an Automated Chronic Wound Infection Marker. J Clin Med. 2021; 11(1):169-180. DOI: https://doi.org/10.3390/jcm11010169

Sekar J, Aruchamy P. An Efficient Clinical Support System for Heart Disease Prediction Using TANFIS Classifier. Comput Intell. 2022; 38(1):610-640. DOI: https://doi.org/10.1111/coin.12487

Shi G, Chen W, Zhang Y, Dai X, Zhang X, Wu Z. An antifouling hydrogel containing silver nanoparticles for modulating the therapeutic immune response in chronic wound healing. Langmuir. 2018; 35(5):1837-1845. DOI: https://doi.org/10.1021/acs.langmuir.8b01834

Szczepanowski Z, Grabarek BO, Boroń D, Tukiendorf A, Kulik‐Parobczy I, Miszczyk L. Microbiological effects in patients with leg ulcers and diabetic foot treated with Lucilia sericata larvae. Int Wound J. 2022; 19(1):135-143. DOI: https://doi.org/10.1111/iwj.13605

Tulloch J, Zamani R, Akrami M. Machine learning in the prevention, diagnosis and management of diabetic foot ulcers: a systematic review. IEEE Access. 2020; 8(1):198977-199000. DOI: https://doi.org/10.1109/ACCESS.2020.3035327

Vimal S, Robinson YH, Kaliappan M, Vijayalakshmi K, Seo S. A method of progression detection for glaucoma using K-means and the GLCM algorithm toward smart medical prediction. J Supercomput. 2021; 77(10):11894-11910. DOI: https://doi.org/10.1007/s11227-021-03757-w

Wannous H, Lucas Y, Treuillet S. Combined machine learning with multi-view modeling for robust wound tissue assessment. In VISAPP 2010-Fifth Int Conf Comput Vis Theory Appl. 2010; 1(1):92-104.

Downloads

Published

21-02-2024

How to Cite

1.
Athi Vaishnavi R, Jegathesh P, Jayasheela M, Mahalakshmi K. A Survey on Impact of Internet of Medical Things Against Diabetic Foot Ulcer. EAI Endorsed Trans Perv Health Tech [Internet]. 2024 Feb. 21 [cited 2025 Jan. 15];10. Available from: https://publications.eai.eu/index.php/phat/article/view/5170