IMU-Based Approach to Detect Spastic Cerebral Palsy in Infants at Early Stages


  • N Sukhadia Sarvajanik University
  • P Kamboj Sarvajanik University



Cerebral Palsy, Spastic Cerebral Palsy, Fidgety Movements, Inertial Measurement Unit, General Movement Assesment


INTRODUCTION: Cerebral Palsy (CP) is a non-progressive neurological disorder affecting muscle control in early childhood, leading to permanent alterations in body posture and movement. Early identification is crucial for accurate diagnosis and therapy-based interventions. In recent years, an automated monitoring system has been developed to facilitate the health assessment of infants, enabling early recognition of neurological dysfunctions in high-risk infants. However, the interpretation of these assessments lacks standardization and is subject to examiner bias.

OBJECTIVES: Many infants with CP exhibit increased tonic stretch reflexes due to Upper Motor Neuron Syndrome (UMNS), resulting from motor neuron damage that disrupts muscle signalling.

METHOD: To detect abnormal muscle reactions, our team employed an Inertial Measurement Unit (IMU) sensor, comprising three tri-axial sensors (accelerometer, gyroscope, magnetometer) that capture movement data continuously and unobtrusively. IMU sensors are compact, cost-effective, and have low processing requirements, requiring attachment to the infant's body to measure inter-body part angles. Our team analyzed muscle activity and posture using IMU sensors, collecting tri-axial data from 43 infants in real-time. Additional factors like age, stride length, and leg length were incorporated into the dataset.

RESULTS: Our team has applied various supervised machine learning approaches to predict CP in infants due to the limited dataset size, validating models through k-fold cross-validation. Among the models, Naive Bayes (NB) outperformed Logistic Regression (LR), Decision Tree (DT), Linear Discriminant Analysis (LDA), k-Nearest Neighbors (kNN), and Support Vector Machine (SVM), achieving an accuracy of 88%. CONCLUSION: This research contributes to the early detection and intervention of CP in infants, potentially improving their long-term outcomes.


Download data is not yet available.


Amiel-Tison,C. Neurological evaluation of the maturity of newborn infants. Archives of Disease in Childhood. 1963; Vol. 43, pp. 89–93. DOI:

A, Cardoso, L, Gomes, C, Silva, R, Soares, M, Abreu, W, Padilha, A, Cavalcanti. Dental Caries and Periodontal Disease in Brazilian Children and Adolescents with Cerebral Palsy, International Journal of Environmental Research and Public Health. 2014; Vol. 12, no. 1, pp. 335. DOI:

Kieviet, JF, Piek, JP, Aarnoudse-Moens, CS, Oosterlaan, J. Motor development in very preterm and very low-birth-weight children from birth to adolescence. JAMA. 2009; Vol. 302, pp. 2235–2242. DOI:

Ali, A, Al-Mayahi.: Early Markers for Cerebral Palsy, Cerebral Palsy - Clinical and Therapeutic Aspects. 2018. DOI:

Prechtl, HFR, Einspieler, C, Cioni, G. An early marker for neurological deficits after perinatal brain lesions. Lancet. 1997; Vol. 349, pp. 1361–1363. DOI:

Prechtl, HFR. General movement assessment as a method of developmental neurology: new paradigms and their consequences. Dev Med Child Neurol. 2001; Vol.43, pp.836–842. DOI:

Dubowitz, LMS, Dubowitz,D, Mercuri,E. The Neurological Assessment of the PreTerm and Full-Term Newborn Infant. 2nd ed. London, United Kingdom: MacKeith Press. 1999. DOI:

Hadders-Algra, M.: Evaluation of motor function in young infants by means of the assessment of general movements: a review. Pediatr Phys Ther. 2001; Vol. 13, pp. 27–36. DOI:

Palmer, FB.: Strategies for the early diagnosis of cerebral palsy. J Pediatr.2004; Vol.145, pp. S8 –S11. DOI:

Cans, C. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol. 2000; Vol. 42, pp. 816–824. DOI:

Bosanquet, M, Copeland, L, Ware, R, Boyd, R. : A systematic review of tests to predict cerebral palsy in young children. Developmental Medicine and Child Neurology. 2013; Vol. 55, pp. 418-426. DOI:

Hadders-Algra, M.: Putative neural substrate of normal and abnormal general movements. Neuroscience and Biobehavioral Reviews. 2017; Vol. 31, pp. 1181-1190. DOI:

Machireddy, A ,Santen, J, Wilson, J, Myers, J, Hadders-Algra, A, Song, X. A video/IMU hybrid system for movement estimation in infants, 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2017. DOI:

Lyons, K, Brashear, H, Westeyn, T, Kim, J, Starner, T. GART - The gesture and activity recognition toolkit. Human-Computer Interaction. HCI Intelligent Multimodal Interaction Environments. 2007; pp. 718–727. DOI:

Zinnen, A, Laerhoven, K, Schiele, B. Toward recognition of short and non-repetitive activities from wearable sensors. Ambient Intelligence. 2007; pp.142–158. DOI:

Junker, H, Amft, O, Lukowicz, P, Trster, G. Gesture spotting with body-worn inertial sensors to detect user activities. Pattern Recognition. 2008; Vol.41, pp.2010 2024. DOI:

Minnen, D, Starner, T, Essa, M, Isbell, C. Discovering characteristic actions from on-body sensor data. In ISWC, 2006; pp. 11–18. DOI:

Choi, S, Shin, Y, Kim, Y and Kim, J. A novel sensor based assessment of lower limb spasticity in children with cerebral palsy, Journal of Neuro Engineering and Rehabilitation. 2018; Vol. 15. DOI:

Tang.L, Fei, Li, Shuai, C, Zhang, X, Wu, D, Xiang, C.: Muscle synergy analysis in children with cerebral palsy, Journal of Neural Engineering.2015; Vol.12. DOI:

Lee, H, Bhat, A, Scholz, J, Galloway, J.: Toy-oriented changes during early arm movements: Iv: shoulder–elbow coordination. Infant Behav Dev. 2008; Vol.31, pp.:447–469. DOI:

Meinecke, L, Breitbach-Faller, N, Bartz, C, Damen, R, Rau G, Disselhorst-Klug, C. Movement analysis in the early detection of newborns at risk for developing spasticity due to infantile cerebral palsy. HumMovement Sci. 2006; Vol.25, pp. 125–144. DOI:

Fallang, B, Saugstad, O, Grogaard, J, Hadders-Algra, M.: Kinematic quality of reaching movements in preterm infants.2003; Vol. 53, pp. 836–842. DOI:

Lee, H, Galloway, J. Early intensive postural and movement training advances head control in very young infants. 2012; Vol. 92, pp. 935–947. DOI:

Berthouze, L, Mayston, M. Design and validation of surface-marker clusters for the quantification of joint rotations in general movements in early infancy. 2011. Vol. 44, pp. 1212–1215. DOI:

Harbourne, R, Lobo, M, Karst, G, Galloway, J. Sit happens: does sitting development perturb reaching development, or vice versa? Infant Behav Dev. 2013; Vol. 36, pp. 438–450. DOI:

Kianifar, R, Joukov, V, Lee, A, Raina, S, Kulić, D. Inertial measurement unit-based pose estimation: Analyzing and reducing sensitivity to sensor placement and body measures, Journal of Rehabilitation and Assistive Technologies Engineering.2019; Vol. 6. DOI:

Singh.M, Patterson, D. Involuntary gesture recognition for predicting cerebral palsy in high-risk infants, International Symposium on Wearable Computers (ISWC).2010. DOI:

Rihar, A, Mihelj, M, Pašič, J, Kolar, J, Munih, M. Infant trunk posture and arm movement assessment using pressure mattress, inertial and magnetic measurement units (IMUs), Journal of NeuroEngineering and Rehabilitation. 2014; Vol. 11, no. 1, pp. 133. DOI:

Ahmad, N, Ghazilla, R, Khairi, M, Kasi, V. Reviews on Various Inertial Measurement Unit (IMU) Sensor Applications, International Journal of Signal Processing Systems. 2013; pp. 256–262. DOI:

Kamruzzaman, J, Begg, R. Support Vector Machines and Other Pattern Recognition Approaches to the Diagnosis of Cerebral Palsy Gait, IEEE Transactions on Biomedical Engineering. 2006; Vol. 53, pp. 2479–2490. DOI:

Zhang, B, Zhang, Y. Classification of cerebral palsy gait by Kernel Fisher Discriminant Analysis, International Journal of Hybrid Intelligent Systems. 2008; Vol.5,pp. 209–218. DOI:

Qingqiang, W, Penglin, Q, Jiachen, K, Fan, W, Zejiang, L, Ruping, B, Chengcheng, H, Uanghua, X. A Training-Free Infant Spontaneous Movement Assessment Method for Cerebral Palsy Prediction Based on Videos, IEEE Transactions On Neural Systems And Rehabilitation Engineering.2023; Vol. 31, pp. 1670–1679. DOI:




How to Cite

Sukhadia N, Kamboj P. IMU-Based Approach to Detect Spastic Cerebral Palsy in Infants at Early Stages. EAI Endorsed Trans Perv Health Tech [Internet]. 2024 Mar. 1 [cited 2024 Apr. 21];10. Available from: