Lung Cancer Detection in CT Images Using Deep Learning Techniques: A Survey Review

Authors

  • C Usharani Ramco Institute of Technology
  • B Revathi Ramco Institute of Technology
  • A Selvapandian PSNA College of Engineering and Technology
  • S K Kezial Elizabeth Mangayarkarasi College of Engineering

DOI:

https://doi.org/10.4108/eetpht.10.5265

Keywords:

Computed Tomography, Lung cancer, Machine Learning, Deep Learning, image processing

Abstract

INTRODUCTION: The Computed Tomography (CT) imaging-based Lung cancer detection is crucial for early diagnosis. This survey paper presents an overview of the techniques and advancements in CT-based lung cancer detection. It covers the fundamentals of CT imaging, including principles, types, and protocols.

OBJECTIVES: The paper explores image processing techniques for pre-processing, such as noise reduction, enhancement, and segmentation.

METHODS: Additionally, it discusses feature extraction methods, including shape, texture, and intensity-based features, as well as Deep Learning (DL) and Machine Learning (ML) methods for automated classification.

RESULTS: Computerised systems and their integration is examined with CT imaging along with performance evaluation metrics. The survey concludes by addressing challenges, limitations, and future directions. The imaging modalities and artificial intelligence techniques are used to improve lung cancer detection.

CONCLUSION: This comprehensive survey aims to provide a concise understanding of CT-based lung cancer detection for researchers and healthcare professionals.

Downloads

Download data is not yet available.

References

Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J,Xu B. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). European radiology. 2021; 31:6096-6104. DOI: https://doi.org/10.1007/s00330-021-07715-1

Manickavasagam R, Selvan S.Automatic Detection and Classification of Lung Nodules in CT Image Using Optimized Neuro Fuzzy Classifier with Cuckoo Search Algorithm. Journal of Medical Systems.2019;77:26-39. DOI: https://doi.org/10.1007/s10916-019-1177-9

Shakeel P.M, Burhanuddin M.A, Desa M.I.: Automatic lung cancer detection from CT image using improved deep neural network and ensemble classifier. Journal of Neural Computing & Application.Vol. 34, pp.34-48, (2022).

Revathi B, Usharani C. Rainfall prediction using machine learning classification algorithms. International Journal of Creative Research Thoughts (IJCRT).2021;9:1-24.

Revathi B, Elizabeth K, Nagaraj P, Birunda S.S.Particle Swarm Optimization based Detection of Diabetic Retinopathy using a Novel Deep CNN. IEEE International Conference on Artificial Intelligence and Smart Energy.2023. p.998-1003. DOI: https://doi.org/10.1109/ICAIS56108.2023.10073926

Nuruzzaman Faruqui, Mohammad Abu Yousuf, Md Whaiduzzaman A.K.M, Azad, Alistair Barros, Mohammad Ali Moni.LungNet: A hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IOT data, Computers in Biology and Medicine.2021.139: DOI: https://doi.org/10.1016/j.compbiomed.2021.104961

Marjolein A, Heuvelmans. Lung cancer prediction by Deep Learning to identify benign lung nodules.Lung Cancer.2021;154:1-4. DOI: https://doi.org/10.1016/j.lungcan.2021.01.027

Massion P.P,Antic S, Ather S, Arteta C,Brabec J, Chen H, Gleeson F. Assessing the accuracy of a deep learning method to risk stratify indeterminate pulmonary nodules. American journal of respiratory and critical care medicine. 2020;20;241-249. DOI: https://doi.org/10.1164/rccm.201903-0505OC

Yongbum Lee, Hara T, Fujita H, Itoh S, Ishigaki T. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Transactions on Medical Imaging.2010; 20:595-604. DOI: https://doi.org/10.1109/42.932744

Brown M. S, McNitt-Gray M. F, Goldin J.G, Suh R. D.Patient-specific models for lung nodule detection and surveillance in CT images. IEEE Transactions on Medical Imaging.2011;20:1242-1250. DOI: https://doi.org/10.1109/42.974919

Sluimer I,Prokop M,Van Ginneken B.Toward automated segmentation of the pathological lung in CT. IEEE transactions on medical imaging,2015;24: 1025-1038. DOI: https://doi.org/10.1109/TMI.2005.851757

Diciotti S,Picozzi G, Falchini M, Mascalchi M, Villari N,Valli G.3-D segmentation algorithm of small lung nodules in spiral CT images. IEEE transactions on Information Technology in Biomedicine.2018;12: DOI: https://doi.org/10.1109/TITB.2007.899504

Woo S.K,Kim K.M,Lee T.S, Jung J.H,Kim J.G, Kim J.S,Cheon G.J.Registration method for the detection of tumors in lung and liver using multimodal small animal imaging. IEEE transactions on nuclear science,.2019;56: 1454-1458. DOI: https://doi.org/10.1109/TNS.2009.2015311

Sun S,Bauer C,Beichel R.Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach. IEEE transactions on medical imaging.2018;31:449-460. DOI: https://doi.org/10.1109/TMI.2011.2171357

Xu Q, Yu H, Mou X, Zhang L, Hsieh J, Wang G. Low-dose X-ray CT reconstruction via dictionary learning. IEEE transactions on medical imaging. 2012;31:1682-1697. DOI: https://doi.org/10.1109/TMI.2012.2195669

Han G, Liu X, Han F, Santika I.N.T. The LISS—a public database of common imaging signs of lung diseases for computer-aided detection and diagnosis research and medical education. IEEE Transactions on Biomedical Engineering. 2014;62(2):648-656. DOI: https://doi.org/10.1109/TBME.2014.2363131

Song J, Yang C,Fan L, Wang K, Yang F, Liu S, Tian J. Lung lesion extraction using a toboggan based growing automatic segmentation approach. IEEE transactions on medical imaging. 2015;35:337-353. DOI: https://doi.org/10.1109/TMI.2015.2474119

Zhang H, Han H, Liang Z, Hu Y. Extracting information from previous full-dose CT scan for knowledge-based Bayesian reconstruction of current low-dose CT images. IEEE transactions on medical imaging. 2015;35:860-870. DOI: https://doi.org/10.1109/TMI.2015.2498148

Setio A, Ciompi F, Litjens G, Gerke P. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE transactions on medical imaging. 2016;35:1160-1169. DOI: https://doi.org/10.1109/TMI.2016.2536809

Dou Q, Chen H, Yu L, Qin J. Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Transactions on Biomedical Engineering.2016;64:1558-1567. DOI: https://doi.org/10.1109/TBME.2016.2613502

Jiang J, H Y. C, Liu C.J, Halpenny D. Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images. IEEE transactions on medical imaging. 2018;38:134-144. DOI: https://doi.org/10.1109/TMI.2018.2857800

Xie Y, Xia Y, Zhang J, Song Y, Feng D. Knowledge- based collaborative deep learning for benign-malignant lung nodule classification on chest CT. IEEE transactions on medical imaging.2018;38:991-1004. DOI: https://doi.org/10.1109/TMI.2018.2876510

Kumar A, Fulham M, Feng D, Kim J. Co-learning feature fusion maps from PET-CT images of lung cancer. IEEE Transactions on Medical Imaging. 2019;39: 204-217. DOI: https://doi.org/10.1109/TMI.2019.2923601

Zheng S, Guo J, Cui X, Veldhuis R.N. Automatic pulmonary nodule detection in CT scans using convolutional neural networks based on maximum intensity projection. IEEE transactions on medical imaging.2019;39:797-805. DOI: https://doi.org/10.1109/TMI.2019.2935553

Ozdemir O, Russell R.L, Berlin A. 3D probabilistic deep learning system for detection and diagnosis of lung cancer using low-dose CT scans. IEEE transactions on medical imaging.2019;39:1419-1429. DOI: https://doi.org/10.1109/TMI.2019.2947595

Masood A,Sheng B, Yang P, Li. Automated decision support system for lung cancer detection and classification via enhanced RFCN with multilayer fusion RPN. IEEE Transactions on Industrial Informatics.2020;16:7791-7801. DOI: https://doi.org/10.1109/TII.2020.2972918

Wang X, Deng X, Fu Q, Zhou Q.A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE transactions on medical imaging.2020;39:2615-2625. DOI: https://doi.org/10.1109/TMI.2020.2995965

Zhou L, Li Z, Zhou J, Li H.A rapid, accurate and machine-agnostic segmentation and quantification method for CT-based COVID-19 diagnosis. IEEE transactions on medical imaging.2020;39:2638-2652. DOI: https://doi.org/10.1109/TMI.2020.3001810

Liu S, Setio A, Ghesu F.C. Gibson.Training robust lung nodule detection for low-dose CT scans by augmenting with adversarial attacks. IEEE Transactions on Medical Imaging,.2020;40:335-345. DOI: https://doi.org/10.1109/TMI.2020.3026261

Yao Q, Xiao L, Liu P, Zhou S.K. Label-free segmentation of COVID-19 lesions in lung CT. IEEE transactions on medical imaging.2021;40:2808-2819. DOI: https://doi.org/10.1109/TMI.2021.3066161

Mei J, Cheng M, Xu G, Wan L.R. SANet: A Slice-Aware Network for Pulmonary Nodule Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022;44:4374-4387. DOI: https://doi.org/10.1109/TPAMI.2021.3065086

Chen L, Liu K, Shen H, Ye H, Liu H. Multimodality Attention-Guided 3-D Detection of Nonsmall Cell Lung Cancer in 18 F-FDG PET/CT Images. IEEE Transactions on Radiation and Plasma Medical Sciences.2021; 6:421-432. DOI: https://doi.org/10.1109/TRPMS.2021.3072064

Ahmed I, Chehri A, Jeon G, Piccialli F. Automated pulmonary nodule classification and detection using deep learning architectures. IEEE Transactions on Computational Biology & Bioinformatics.2022;4:36-49. DOI: https://doi.org/10.1109/TCBB.2022.3192139

Li Z, Wang S, Yu H, Zhu Y. A novel deep learning framework based mask-guided attention mechanism for distant metastasis prediction of lung cancer. IEEE Transactions on Emerging Topics in Computational Intelligence.2022;7:330-341. DOI: https://doi.org/10.1109/TETCI.2022.3171311

Downloads

Published

01-03-2024

How to Cite

1.
Usharani C, Revathi B, Selvapandian A, Kezial Elizabeth SK. Lung Cancer Detection in CT Images Using Deep Learning Techniques: A Survey Review . EAI Endorsed Trans Perv Health Tech [Internet]. 2024 Mar. 1 [cited 2024 Nov. 15];10. Available from: https://publications.eai.eu/index.php/phat/article/view/5265