Colorectal cancer prediction via histopathology segmentation using DC-GAN and VAE-GAN

Authors

DOI:

https://doi.org/10.4108/eetpht.10.5395

Keywords:

Generative Adversarial Network, Variational Autoencoder GAN, Colorectal Cancer, Medical Image

Abstract

Colorectal cancer ranks as the third most common form of cancer in the United States. The Centres of Disease Control and Prevention report that males and individuals assigned male at birth (AMAB) have a slightly higher incidence of colon cancer than females and those assigned female at birth (AFAB) Black humans are more likely than other ethnic groups or races to develop colon cancer. Early detection of suspicious tissues can improve a person's life for 3-4 years. In this project, we use the EBHI-seg dataset. This study explores a technique called Generative Adversarial Networks (GAN) that can be utilized for data augmentation colorectal cancer histopathology Image Segmentation. Specifically, we compare the effectiveness of two GAN models, namely the deep convolutional GAN (DC-GAN) and the Variational autoencoder GAN (VAE-GAN), in generating realistic synthetic images for training a neural network model for cancer prediction. Our findings suggest that DC-GAN outperforms VAE-GAN in generating high-quality synthetic images and improving the neural network model. These results highlight the possibility of GAN-based data augmentation to enhance machine learning models’ performance in medical image analysis tasks. The result shows DC-GAN outperformed VAE-GAN.

Downloads

Download data is not yet available.

References

Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H, “GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification” Neurocomputing, Vol. 321,321-33 (2018) DOI: https://doi.org/10.1016/j.neucom.2018.09.013

Xue, Y., Xu, T., Zhang, H., Long, L. R., & Huang, X. “Segan: Adversarial net-work with multi-scale l 1 loss for medical image segmentation”, Neuroinformatics, 16, 383-392 (2018). DOI: https://doi.org/10.1007/s12021-018-9377-x

Way, G. P., & Greene, C. S, “Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders”. in pacific symposium on biocomputing 2018: Proceedings of the Pacific Symposium (pp. 80-91), 2018 DOI: https://doi.org/10.1142/9789813235533_0008

Sandfort, V., Yan, K., Pickhardt, P. J., & Summers, R. M., ”Data augmentation using generative adversarial networks (Cycle GAN) to improve generalizability in CT segmentation tasks”, Scientific reports, 9, (2019). DOI: https://doi.org/10.1038/s41598-019-52737-x

Liu, X., Guo, S., Zhang, H., He, K., Mu, S., Guo, Y., & Li, X. (2019). Accurate colo-rectal tumor segmentation for CT scans based on the label assignment generative ad-versarial network. Medical physics, 46(8), 3532-3542.s DOI: https://doi.org/10.1002/mp.13584

Asperti, A. (2019). About generative aspects of variational autoencoders. In Machine Learning, Optimization, and Data Science: 5th International Conference, LOD 2019, Siena, Italy, September 10–13, 2019, Proceedings 5 (pp. 71-82). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-37599-7_7

Odaibo, S. (2019). Tutorial: Deriving the standard variational autoencoder (vae) loss function. arXiv preprint arXiv:1907.08956.

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends in Machine Learning, 12(4), 307-392. DOI: https://doi.org/10.1561/2200000056

Desai, S. D., Giraddi, S., Verma, N., Gupta, P., & Ramya, S. (2020, September). Breast cancer detection using GAN for limited labeled dataset. In 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 34-39). IEEE. DOI: https://doi.org/10.1109/CICN49253.2020.9242551

Negi, A., Raj, A. N. J., Nersisson, R., Zhuang, Z., & Murugappan, M. (2020). RDA-UNETWGAN: an accurate breast ultrasound lesion segmentation using wasserstein generative adversarial networks. Arabian Journal for Science and Engineering, 45, 6399-6410. DOI: https://doi.org/10.1007/s13369-020-04480-z

Wang, S., Wang, X., Hu, Y., Shen, Y., Yang, Z., Gan, M., & Lei, B. (2020). Diabetic retinopathy diagnosis using multichannel generative adversarial network with semisupervision. IEEE Transactions on Automation Science and Engineering, 18(2), 574-585. DOI: https://doi.org/10.1109/TASE.2020.2981637

Kora Venu, S., & Ravula, S. (2020). Evaluation of deep convolutional generative adversarial networks for data augmentation of chest x-ray images. Future Internet, 13(1), 8. DOI: https://doi.org/10.3390/fi13010008

Bushra, S. N., & Shobana, G. (2020, December). A Survey on Deep Convolutional Generative Adversarial Neural Network (DCGAN) for Detection of Covid-19 using Chest X-ray/CT-Scan. In 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS) (pp. 702-708). IEEE.

Bushra, S. N., & Shobana, G. (2020, December). A Survey on Deep Convolutional Generative Adversarial Neural Network (DCGAN) for Detection of Covid-19 using Chest X-ray/CT-Scan. In 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS) (pp. 702-708). IEEE. DOI: https://doi.org/10.1109/ICISS49785.2020.9316125

Lin, C. C., Hung, Y., Feris, R., & He, L. (2020). Video instance segmentation tracking with a modified vae architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13147-13157). DOI: https://doi.org/10.1109/CVPR42600.2020.01316

Lou, Z., Le, K., & Tian, X. (2021, June). Nu-net based gan: Using nested u-structure for whole heart auto segmentation. In 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 601-604). IEEE. DOI: https://doi.org/10.1109/ICAICA52286.2021.9497906

Xi, Y., & Xu, P. (2021). Global colorectal cancer burden in 2020 and projections to 2040. Translational oncology, 14(10), 101174. DOI: https://doi.org/10.1016/j.tranon.2021.101174

Thambawita, V., Salehi, P., Sheshkal, S. A., Hicks, S. A., Hammer, H. L., Parasa, S., ... & Riegler, M. A. (2022). SinGAN-Seg: Synthetic training data generation for medical image segmentation. PloS one, 17(5), e0267976. DOI: https://doi.org/10.1371/journal.pone.0267976

Liu, B., Lv, J., Fan, X., Luo, J., & Zou, T. (2022). Application of an Improved DCGAN for Image Generation. Mobile Information Systems, 2022. DOI: https://doi.org/10.1155/2022/9005552

Raju, M. S. N., & Rao, B. S. (2022). Colorectal Cancer Disease Classification and Seg-mentation Using A Novel Deep Learning Approach. International Journal of Intelligent Engineering Systems, 15(4), 227-236. DOI: https://doi.org/10.22266/ijies2022.0831.21

Rafique, R., Islam, S. R., & Kazi, J. U. (2021). Machine learning in the prediction of cancer therapy. Computational and Structural Biotechnology Journal, 19, 4003-4017. DOI: https://doi.org/10.1016/j.csbj.2021.07.003

Li, Y., Wu, X., Yang, P., Jiang, G., & Luo, Y. (2022). Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis. Genomics, Proteomics & Bioinformatics. DOI: https://doi.org/10.1016/j.gpb.2022.11.003

Downloads

Published

12-03-2024

How to Cite

1.
Sujatha R, K M, Yoosuf MS. Colorectal cancer prediction via histopathology segmentation using DC-GAN and VAE-GAN. EAI Endorsed Trans Perv Health Tech [Internet]. 2024 Mar. 12 [cited 2025 Jan. 15];10. Available from: https://publications.eai.eu/index.php/phat/article/view/5395