A Wearable Device for Assistance of Alzheimer’s disease with Computer Aided Diagnosis





Global Positioning System, GPS, Alzheimer's disease, AD, Dementia, Caregiver, wearable device


INTRODUCTION: Alzheimer’s disease (AD), which is also a pervasive form of dementia primarily common among the elderly, causes progressive brain damage, which might lead to memory loss, language impairment, with cognitive decline. This research proposed a solution that leveraged wearable technology's potential for computer-aided diagnosis. This wearable device, which looks like a pendant, integrates a panic button to notify the closed ones during an emergency.

OBJECTIVES: The primary objective is to effectively scrutinise and implement the wearable device for computer-aided diagnosis in AD. Specifically, this device aims to provide timely alerts to family members during emergencies and other symptoms.

METHODS: The proposed system is developed with the help of a microcontroller and integrates the Android Studio. This device, which resembles a pendant, contains a panic button that connects to a mobile application which receives notifications.

RESULTS: The system successfully achieved its objectives by providing timely alerts with accurate cognitive support for AD patients. The wearable device developed along with the mobile application, with the help of a microcontroller and Android Studio, contributed to the overall well-being of patients with AD.

CONCLUSION: This research introduced a very innovative and promising solution for improving the lives of individuals with AD through this wearable device and mobile application. By addressing these challenges, the system demonstrated its true potential for enhancing the quality of life for individuals with dementia.


Download data is not yet available.


2018 Alzheimer’s disease facts and figures. (2018). Alzheimer’s and Dementia. https://doi.org/10.1016/j.jalz.2018.02.001 DOI: https://doi.org/10.1016/j.jalz.2018.02.001

Abbate, S., Avvenuti, M., & Light, J. (2014). Usability Study of a wireless monitoring system among Alzheimer’s disease elderly population. International Journal of Telemedicine and Applications. https://doi.org/10.1155/2014/617495 DOI: https://doi.org/10.1155/2014/617495

Al-khafajiy, M., Baker, T., Chalmers, C., Asim, M., Kolivand, H., Fahim, M., & Waraich, A. (2019). Remote health monitoring of older people through wearable sensors. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-018-7134-7 DOI: https://doi.org/10.1007/s11042-018-7134-7

Aljehani, S. S., Alhazmi, R. A., Aloufi, S. S., Aljehani, B. D., & Abdulrahman, R. (2018). ICare: Applying IoT Technology for Monitoring Alzheimer’s Patients. 1st International Conference on Computer Applications and Information Security, ICCAIS 2018. https://doi.org/10.1109/CAIS.2018.8442010 DOI: https://doi.org/10.1109/CAIS.2018.8442010

Angelini, L., Carrino, S., Khaled, O. A., Riva-Mossman, S., & Mugellini, E. (2016). Senior living lab: An ecological approach to foster social innovation in an ageing society. Future Internet. https://doi.org/10.3390/fi8040050 DOI: https://doi.org/10.3390/fi8040050

Bonato, P. (2010). Wearable sensors and systems. IEEE Engineering in Medicine and Biology Magazine. https://doi.org/10.1109/MEMB.2010.936554 DOI: https://doi.org/10.1109/MEMB.2010.936554

Chung, P. C., Hsu, Y. L., Wang, C. Y., Lin, C. W., Wang, J. S., & Pai, M. C. (2012). Gait analysis for patients with Alzheimer’s disease using a triaxial accelerometer. ISCAS 2012 - 2012 IEEE International Symposium on Circuits and Systems. https://doi.org/10.1109/ISCAS.2012.6271484 DOI: https://doi.org/10.1109/ISCAS.2012.6271484

Dohr, A., Modre-Osprian, R., Drobics, M., Hayn, D., & Schreier, G. (2010). The Internet of Things for ambient assisted living. ITNG2010 - 7th International Conference on Information Technology: New Generations. https://doi.org/10.1109/ITNG.2010.104 DOI: https://doi.org/10.1109/ITNG.2010.104

Gibson, G., Newton, L., Pritchard, G., Finch, T., Brittain, K., & Robinson, L. (2016). The provision of assistive technology products and services for people with dementia in the United Kingdom. Dementia. https://doi.org/10.1177/1471301214532643 DOI: https://doi.org/10.1177/1471301214532643

Grindrod, K. A., Li, M., & Gates, A. (2014). Evaluating user perceptions of mobile medication management applications with older adults: A usability study. Journal of Medical Internet Research. https://doi.org/10.2196/mhealth.3048 DOI: https://doi.org/10.2196/mhealth.3048

Hsu, Y. L., Chung, P. C., Wang, W. H., Pai, M. C., Wang, C. Y., Lin, C. W., Wu, H. L., & Wang, J. S. (2014). Gait and balance analysis for patients with Alzheimer’s disease using an inertial-sensor-based wearable instrument. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2014.2325413 DOI: https://doi.org/10.1109/JBHI.2014.2325413

Kourtis, L. C., Regele, O. B., Wright, J. M., & Jones, G. B. (2019). Digital biomarkers for Alzheimer’s disease: the mobile/wearable devices opportunity. Npj Digital Medicine. https://doi.org/10.1038/s41746-019-0084-2 DOI: https://doi.org/10.1038/s41746-019-0084-2

Lai Kwan, C., Mahdid, Y., Motta Ochoa, R., Lee, K., Park, M., & Blain-Moraes, S. (2019). Wearable technology for detecting significant moments in individuals with dementia. BioMed Research International. https://doi.org/10.1155/2019/6515813 DOI: https://doi.org/10.1155/2019/6515813

Landau, R., Werner, S., Auslander, G. K., Shoval, N., & Heinik, J. (2009). Attitudes of family and professional caregivers towards using GPS for tracking patients with dementia: An exploratory study. British Journal of Social Work. https://doi.org/10.1093/bjsw/bcp037 DOI: https://doi.org/10.1093/bjsw/bcp037

Li, R., Lu, B., & McDonald-Maier, K. D. (2015). Cognitive assisted living ambient system: a survey. In Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2015.10.003 DOI: https://doi.org/10.1016/j.dcan.2015.10.003

Lin, C. T., Ko, L. W., Chang, M. H., Duann, J. R., Chen, J. Y., Su, T. P., & Jung, T. P. (2010). Review of wireless and wearable electroencephalogram systems and brain-computer interfaces - A mini-review. In Gerontology. https://doi.org/10.1159/000230807 DOI: https://doi.org/10.1159/000230807

Mahoney, E. L., & Mahoney, D. F. (2010). Acceptance of wearable technology by people with Alzheimer's disease: Issues and accommodations. American Journal of Alzheimer’s Disease and Other Dementias. https://doi.org/10.1177/1533317510376944 DOI: https://doi.org/10.1177/1533317510376944

Maresova, P., Klimova, B., Novotny, M., & Kuca, K. (2016). Alzheimer’s and Parkinson’s Diseases: Expected Economic Impact on Europe Call for a Uniform European Strategy. Journal of Alzheimer’s Disease. https://doi.org/10.3233/JAD-160484 DOI: https://doi.org/10.3233/JAD-160484

Maresova, P., Mohelska, H., Dolejs, J., & Kuca, K. (2015). Socio-economic Aspects of Alzheimer’s Disease. Current Alzheimer Research. https://doi.org/10.2174/156720501209151019111448 DOI: https://doi.org/10.2174/156720501209151019111448

Margiotta, N., Avitabile, G., & Coviello, G. (2017). A wearable wireless system for gait analysis for early diagnosis of Alzheimer's and Parkinson's disease. International Conference on Electronic Devices, Systems, and Applications. https://doi.org/10.1109/ICEDSA.2016.7818553 DOI: https://doi.org/10.1109/ICEDSA.2016.7818553

Mendoza, M. B., Bergado, C. A., De Castro, J. L. B., & Siasat, R. G. T. (2017). Tracking system for patients with Alzheimer’s disease in a nursing home. IEEE Region 10 Annual International Conference, Proceedings/TENCON. https://doi.org/10.1109/TENCON.2017.8228294 DOI: https://doi.org/10.1109/TENCON.2017.8228294

Oresko, J. J., Jin, Z., Cheng, J., Huang, S., Sun, Y., Duschl, H., & Cheng, A. C. (2010). A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing. IEEE Transactions on Information Technology in Biomedicine. https://doi.org/10.1109/TITB.2010.2047865 DOI: https://doi.org/10.1109/TITB.2010.2047865

Paiva, S., & Abreu, C. (2012). Low-Cost GPS Tracking for the Elderly and Alzheimer Patients. Procedia Technology. https://doi.org/10.1016/j.protcy.2012.09.088 DOI: https://doi.org/10.1016/j.protcy.2012.09.088

Shin, D. M., Shin, D. Il, & Shin, D. (2013). Smartwatch and monitoring system for dementia patients. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-38027-3_62 DOI: https://doi.org/10.1007/978-3-642-38027-3_62

Shoval, N., Auslander, G. K., Freytag, T., Landau, R., Oswald, F., Seidl, U., Wahl, H. W., Werner, S., & Heinik, J. (2008). The use of advanced tracking technologies for the analysis of mobility in Alzheimer’s disease and related cognitive diseases. BMC Geriatrics. https://doi.org/ 10.1186/ 1471-2318-8-7 DOI: https://doi.org/10.1186/1471-2318-8-7

L. Jiang, Y. Wang, Y. Li, B. Tao, F. Sun and J. Speakman, "Wearable Sensors Based Human Core Body Temperature Computing Method," 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Abu Dhabi, United Arab Emirates, 2023, pp. 0499-0504. DOI: https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361403

N. Bu and M. Uehara, "Heart Rate Variability Measurement in a Wearable Device using Low Sampling Rates," 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech), Osaka, Japan, 2022, pp. 576-579. DOI: https://doi.org/10.1109/LifeTech53646.2022.9754795

X. Ding et al., "Wearable Sensing and Telehealth Technology with Potential Applications in the Coronavirus Pandemic," in IEEE Reviews in Biomedical Engineering, vol. 14, pp. 48-70, 2021, doi: 10.1109/RBME.2020.2992838. DOI: https://doi.org/10.1109/RBME.2020.2992838

Stavropoulos, T. G., Papastergiou, A., Mpaltadoros, L., Nikolopoulos, S., & Kompatsiaris, I. (2020). Iot wearable sensors and devices in elderly care: A literature review. In Sensors (Switzerland). https://doi.org/10.3390/s20102826

Uddin, M. Z., Khaksar, W., & Torresen, J. (2018). Ambient sensors for elderly care and independent living: A survey. In Sensors (Switzerland). https://doi.org /10.3390/s18072027 DOI: https://doi.org/10.3390/s18072027

Varatharajan, R., Manogaran, G., Priyan, M. K., & Sundarasekar, R. (2018). Wearable sensor devices for early detection of Alzheimer's disease using dynamic time warping algorithm. Cluster Computing. https://doi.org/10.1007/s10586-017-0977-2 DOI: https://doi.org/10.1007/s10586-017-0977-2

Vegesna, A., Tran, M., Angelaccio, M., & Arcona, S. (2017). Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review. In Telemedicine and e-Health. https://doi. org/10.1089 /tmj.2016.0051 DOI: https://doi.org/10.1089/tmj.2016.0051

Woodberry, E., Browne, G., Hodges, S., Watson, P., Kapur, N., & Woodberry, K. (2015). The use of a wearable camera improves autobiographical memory in patients with Alzheimer’s disease. Memory. https://doi.org/10.1080/09658211.2014.886703 DOI: https://doi.org/10.1080/09658211.2014.886703

Zdravevski, E., Lameski, P., Trajkovik, V., Kulakov, A., Chorbev, I., Goleva, R., Pombo, N., & Garcia, N. (2017). Improving Activity Recognition Accuracy in Ambient-Assisted Living Systems by Automated Feature Engineering. IEEE access https://doi.org/10.1109/ACCESS.2017.2684913 DOI: https://doi.org/10.1109/ACCESS.2017.2684913

Saied, I. M., & Arslan, T. (2019). Noninvasive wearable RF device towards monitoring brain atrophy and lateral ventricle enlargement. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 4(1), 61-68. DOI: https://doi.org/10.1109/JERM.2019.2926163

Godfrey, A., Brodie, M., van Schooten, K., Nouredanesh, M., Stuart, S., & Robinson, L. (2019). Inertial wearables as pragmatic tools in dementia. Maturitas, 127, 12-17. https://doi.org/10.1016/j.maturitas.2019.05.010 DOI: https://doi.org/10.1016/j.maturitas.2019.05.010

Harrer, S., Shah, P., Antony, B., & Hu, J. (2019). Artificial Intelligence for Clinical Trial Design. Trends in Pharmacological Sciences, 40(8), 577-591. https://doi.org/10.1016/j.tips.2019.05.005 DOI: https://doi.org/10.1016/j.tips.2019.05.005

B. G. Rosa, S. Anastasova-Ivanova and G. Z. Yang, "A Low-powered and Wearable Device for Monitoring Sleep through Electrical, Chemical and Motion signals recorded over the head," 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 2019, pp. 1-4, doi: 10.1109/BIOCAS.2019.8918971. DOI: https://doi.org/10.1109/BIOCAS.2019.8918971

Stavropoulos, T. G., Papastergiou, A., Mpaltadoros, L., Nikolopoulos, S., & Kompatsiaris, I. (2020). IoT Wearable Sensors and Devices in Elderly Care: A Literature Review. Sensors, 20(10), 2826. https://doi.org/10.3390/s20102826 DOI: https://doi.org/10.3390/s20102826

Ahmed, Q. A., & Al-Neami, A. Q. (2020, July). A smart biomedical-assisted system for Alzheimer patients. In IOP Conference Series: Materials Science and Engineering (Vol. 881, No. 1, p. 012110). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/881/1/012110

Stavropoulos, T. G., Lazarou, I., Diaz, A., Gove, D., Georges, J., Manyakov, N. V., ... & RADAR-AD Consortium. (2021). Wearable devices for assessing function in Alzheimer's disease: a European public involvement activity about the features and preferences of patients and caregivers. Frontiers in Aging Neuroscience, 13, 643135. DOI: https://doi.org/10.3389/fnagi.2021.643135

Banerjee, A., Maji, D., Datta, R., Barman, S., Samanta, D., & Chattopadhyay, S. (2022). SHUBHCHINTAK: An efficient remote health monitoring approach for older adults. Multimedia Tools and Applications, 81(26), 37137-37163. DOI: https://doi.org/10.1007/s11042-022-13539-y

Sujith, A. V. L. N., Sajja, G. S., Mahalakshmi, V., Nuhmani, S., & Prasanalakshmi, B. (2022). Systematic review of smart health monitoring using deep learning and Artificial intelligence. Neuroscience Informatics, 2(3), 100028. DOI: https://doi.org/10.1016/j.neuri.2021.100028

Zhao, Z., Chuah, J. H., Lai, K. W., Chow, C. O., Gochoo, M., Dhanalakshmi, S., ... & Wu, X. (2023). Conventional machine learning and deep learning in Alzheimer's disease diagnosis using neuroimaging: A review. Frontiers in Computational Neuroscience, 17, 10. DOI: https://doi.org/10.3389/fncom.2023.1038636

Vrahatis, A. G., Skolariki, K., Krokidis, M. G., Lazaros, K., Exarchos, T. P., & Vlamos, P. (2023). Revolutionising the Early Detection of Alzheimer’s Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning. Sensors, 23(9), 4184. DOI: https://doi.org/10.3390/s23094184




How to Cite

Sarita, Choudhury T, Mukherjee S, Dutta C, Sharma A, Sar A. A Wearable Device for Assistance of Alzheimer’s disease with Computer Aided Diagnosis. EAI Endorsed Trans Perv Health Tech [Internet]. 2024 Mar. 20 [cited 2024 Apr. 25];10. Available from: https://publications.eai.eu/index.php/phat/article/view/5483