Deep Learning in Medical Imaging: A Case Study on Lung Tissue Classification
DOI:
https://doi.org/10.4108/eetpht.10.5549Keywords:
Medical imaging, Lung tissue, DL models, Deep Learning models, Histopathology imagery, Dataset, Lung-related ailments, Cancer diagnosis, Performance evaluation, Precision and recallAbstract
INTRODUCTION: In the field of medical imaging, accurate categorization of lung tissue is essential for timely diagnosis and management of lung-related conditions, including cancer. Deep Learning (DL) methodologies have revolutionized this domain, promising improved precision and effectiveness in diagnosing ailments based on image analysis. This research delves into the application of DL models for classifying lung tissue, particularly focusing on histopathological imagery.
OBJECTIVES: The primary objective of this study is to explore the deployment of DL models for the classification of lung tissue, emphasizing histopathological images. The research aims to assess the performance of various DL models in accurately distinguishing between different classes of lung tissue, including benign tissue, lung adenocarcinoma, and lung squamous cell carcinoma.
METHODS: A dataset comprising 9,000 histopathological images of lung tissue was utilized, sourced from HIPAA compliant and validated sources. The dataset underwent augmentation to ensure diversity and robustness. The images were categorized into three distinct classes and balanced before being split into training, validation, and testing sets. Six DL models - DenseNet201, EfficientNetB7, EfficientNetB5, Vgg19, Vgg16, and Alexnet - were trained and evaluated on this dataset. Performance assessment was conducted based on precision, recall, F1-score for each class, and overall accuracy.
RESULTS: The results revealed varying performance levels among the DL models, with EfficientNetB5 achieving perfect scores across all metrics. This highlights the capability of DL in improving the accuracy of lung tissue classification, which holds promise for enhancing diagnosis and treatment outcomes in lung-related conditions.
CONCLUSION: This research significantly contributes to understanding the effective utilization of DL models in medical imaging, particularly for lung tissue classification. It emphasizes the critical role of a diverse and balanced dataset in developing robust and accurate models. The insights gained from this study lay the groundwork for further exploration into refining DL methodologies for medical imaging applications, with a focus on improving diagnostic accuracy and ultimately, patient outcomes.
Downloads
References
Jünger, S. T., Hoyer, U. C. I., Schaufler, D., Laukamp, K. R., Goertz, L., Thiele, F., Grunz, J., Schlamann, M., Perkuhn, M., Kabbasch, C., Persigehl, T., Grau, S., Borggrefe, J., Scheffler, M., Shahzad, R., & Pennig, L. (2021). Fully Automated MR Detection and Segmentation of Brain Metastases in Non‐small Cell Lung Cancer Using Deep Learning. Journal of Magnetic Resonance Imaging, 54(5), 1608–1622. https://doi.org/10.1002/jmri.27741 DOI: https://doi.org/10.1002/jmri.27741
Masud, M., Sikder, N., Nahid, A.-A., Bairagi, A. K., & AlZain, M. A. (2021). A Machine Learning Approach to Diagnosing Lung and Colon Cancer Using a Deep Learning-Based Classification Framework. Sensors (Basel, Switzerland), 21(3), 748. https://doi.org/10.3390/s21030748 DOI: https://doi.org/10.3390/s21030748
Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., Moreira, A. L., Razavian, N., & Tsirigos, A. (2018). Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nature Medicine, 24(10), 1559–1567. https://doi.org/10.1038/s41591-018-0177-5 DOI: https://doi.org/10.1038/s41591-018-0177-5
Chen, J., Zeng, H., Zhang, C., Shi, Z., Dekker, A., Wee, L., & Bermejo, I. (2022). Lung cancer diagnosis using deep attention-based multiple instance learning and radiomics. Medical Physics (Lancaster), 49(5), 3134–3143. https://doi.org/10.1002/mp.15539 DOI: https://doi.org/10.1002/mp.15539
Yeh, M. C.-H., Wang, Y.-H., Yang, H.-C., Bai, K.-J., Wang, H.-H., & Li, Y.-C. (2021). Artificial Intelligence-Based Prediction of Lung Cancer Risk Using Nonimaging Electronic Medical Records: Deep Learning Approach. Journal of Medical Internet Research, 23(8), e26256–e26256. https://doi.org/10.2196/26256 DOI: https://doi.org/10.2196/26256
Rong, Z., Lingyun, D., Jinxing, L., & Ying, G. (2021). Diagnostic Classification of Lung Cancer Using Deep Transfer Learning Technology and Multi‐Omics Data. CHINESE JOURNAL OF ELECTRONICS, 30(5), 843–852. https://doi.org/10.1049/cje.2021.06.006 DOI: https://doi.org/10.1049/cje.2021.06.006
Tan, H., Bates, J. H. T., & Matthew Kinsey, C. (2022). Discriminating TB lung nodules from early lung cancers using deep learning. BMC Medical Informatics and Decision Making, 22(1), 1–161. https://doi.org/10.1186/s12911-022-01904-8 DOI: https://doi.org/10.1186/s12911-022-01904-8
Nishio, M., Sugiyama, O., Yakami, M., Ueno, S., Kubo, T., Kuroda, T., & Togashi, K. (2018). Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PloS One, 13(7), e0200721–e0200721. https://doi.org/10.1371/journal.pone.0200721 DOI: https://doi.org/10.1371/journal.pone.0200721
Park, J., Kang, S. K., Hwang, D., Choi, H., Ha, S., Seo, J. M., Eo, J. S., & Lee, J. S. (2023). Automatic Lung Cancer Segmentation in [18F]FDG PET/CT Using a Two-Stage Deep Learning Approach. Nuclear Medicine and Molecular Imaging, 57(2), 86–93. https://doi.org/10.1007/s13139-022-00745-7 DOI: https://doi.org/10.1007/s13139-022-00745-7
Talukder, M. A., Islam, M. M., Uddin, M. A., Akhter, A., Hasan, K. F., & Moni, M. A. (2022). Machine learning-based lung and colon cancer detection using deep feature extraction and ensemble learning. Expert Systems with Applications, 205, 117695. https://doi.org/10.1016/j.eswa.2022.117695 DOI: https://doi.org/10.1016/j.eswa.2022.117695
Zhang, H., Liao, M., Guo, Q., Chen, J., Wang, S., Liu, S., & Xiao, F. (2023). Predicting N2 lymph node metastasis in presurgical stage I‐II non‐small cell lung cancer using multiview radiomics and deep learning method. Medical Physics (Lancaster), 50(4), 2049–2060. https://doi.org/10.1002/mp.16177 DOI: https://doi.org/10.1002/mp.16177
Li, B., Dai, C., Wang, L., Deng, H., Li, Y., Guan, Z., & Ni, H. (2020). A novel drug repurposing approach for non-small cell lung cancer using deep learning. PloS One, 15(6), e0233112–e0233112. https://doi.org/10.1371/journal.pone.0233112 DOI: https://doi.org/10.1371/journal.pone.0233112
Zheng, S., Guo, J., Langendijk, J. A., Both, S., Veldhuis, R. N. J., Oudkerk, M., van Ooijen, P. M. A., Wijsman, R., & Sijtsema, N. M. (2023). Survival prediction for stage I-IIIA non-small cell lung cancer using deep learning. Radiotherapy and Oncology, 180, 109483. https://doi.org/10.1016/j.radonc.2023.109483 DOI: https://doi.org/10.1016/j.radonc.2023.109483
Ghosh, H., Tusher, M.A., Rahat, I.S., Khasim, S., Mohanty, S.N. (2023). Water Quality Assessment Through Predictive Machine Learning. In: Intelligent Computing and Networking. IC-ICN 2023. Lecture Notes in Networks and Systems, vol 699. Springer, Singapore. https://doi.org/10.1007/978-981-99-3177-4_6 DOI: https://doi.org/10.1007/978-981-99-3177-4_6
Mohanty, S.N.; Ghosh, H.; Rahat, I.S.; Reddy, C.V.R. Advanced Deep Learning Models for Corn Leaf Disease Classification: A Field Study in Bangladesh. Eng. Proc. 2023, 59, 69. https://doi.org/10.3390/engproc2023059069 DOI: https://doi.org/10.3390/engproc2023059069
Md Abdus Shobur,Abdus Sobur,Md Ruhul Amin, "Walmart Data Analysis Using Machine Learning", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.11, Issue 7, pp.f894-f898, July 2023, Available at :http://www.ijcrt.org/papers/IJCRT2307693
Nazrul Islam, Kazi and Sobur, Abdus and Kabir, Md Humayun, The Right to Life of Children and Cyberbullying Dominates Human Rights: Society Impacts (August 8, 2023). Available at SSRN: https://ssrn.com/abstract=4537139 or http://dx.doi.org/10.2139/ssrn.4537139 DOI: https://doi.org/10.2139/ssrn.4537139
Md Humayun Kabir,Abdus Sobur,Md Ruhul Amin, "Stock Price Prediction Using the Machine Learning Model", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.11, Issue 7, pp.f946-f950, July 2023, Available at :http://www.ijcrt.org/papers/IJCRT2307700.pdf
Md Suhel Rana, Md Humayun Kabir, & Abdus Sobur. (2023). Comparison of the Error Rates of MNIST Datasets Using Different Type of Machine Learning Model. https://doi.org/10.5281/zenodo.8010602
Md Abdus Shobur,Kazi Nazrul Islam,Md Humayun Kabir,Anwar Hossain, "A CONTRADISTINCTION STUDY OF PHYSICAL VS. CYBERSPACE SOCIAL ENGINEERING ATTACKS AND DEFENSE", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.11, Issue 9, pp.e165-e170, September 2023, Available at :http://www.ijcrt.org/papers/IJCRT2309500.pdf
Ghosh H, Rahat IS, Shaik K, Khasim S, Yesubabu M. Potato Leaf Disease Recognition and Prediction using Convolutional Neural Networks. EAI Endorsed Scal Inf Syst [Internet]. 2023 Sep. 21 [cited 2023 Sep. 22];.https://doi.org/10.4108/eetsis.3937 DOI: https://doi.org/10.4108/eetsis.3937
Patel, B. N., & Langlotz, C. P. (2021). Beyond the AJR: "Deep Learning Using Chest Radiographs to Identify High- Risk Smokers for Lung Cancer Screening Computed Tomography: Development and Validation of a Prediction Model" American Journal of Roentgenology (1976), 217(2), 521–521. https://doi.org/10.2214/AJR.20.25334 DOI: https://doi.org/10.2214/AJR.20.25334
Varchagall, M., Nethravathi, N. P., Chandramma, R., Nagashree, N., & Athreya, S. M. (2023). Using Deep Learning Techniques to Evaluate Lung Cancer Using CT Images. SN Computer Science, 4(2). https://doi.org/10.1007/s42979-022-01587-y DOI: https://doi.org/10.1007/s42979-022-01587-y
Chen, C.-L., Chen, C.-C., Yu, W.-H., Chen, S.-H., Chang, Y.-C., Hsu, T.-I., Hsiao, M., Yeh, C.-Y., & Chen, C.-Y. (2021). An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning. Nature Communications, 12(1), 1193–1193. https://doi.org/10.1038/s41467-021-21467-y DOI: https://doi.org/10.1038/s41467-021-21467-y
Torres, F. S., Akbar, S., Raman, S., Yasufuku, K., Hannessy, T. J., Baldauf-Lenschen, F., & Leighl, N. B. (2022). Automated imaging-based prognostication (IPRO) for stage I non-small cell lung cancer using deep learning applied to computed tomography. Journal of Clinical Oncology, 40(16_suppl), e20575–e20575. https://doi.org/10.1200/JCO.2022.40.16_suppl.e20575 DOI: https://doi.org/10.1200/JCO.2022.40.16_suppl.e20575
G. P. Rout and S. N. Mohanty, "A Hybrid Approach for Network Intrusion Detection," 2015 Fifth International Conference on Communication Systems and Network Technologies, Gwalior, India, 2015, pp. 614-617, doi: 10.1109/CSNT.2015.76. DOI: https://doi.org/10.1109/CSNT.2015.76
Alenezi, F.; Armghan, A.; Mohanty, S.N.; Jhaveri, R.H.; Tiwari, P. Block-Greedy and CNN Based Underwater Image Dehazing for Novel Depth Estimation and Optimal Ambient Light. Water 2021, 13, 3470. https://doi.org/10.3390/w13233470 DOI: https://doi.org/10.3390/w13233470
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sandeep Kumar Panda, Janjhyam Venkata Naga Ramesh, Hritwik Ghosh, Irfan Sadiq Rahat, Abdus Sobur, Mehadi Hasan Bijoy, Mannava Yesubabu
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.