Swift Diagnose: A High-Performance Shallow Convolutional Neural Network for Rapid and Reliable SARS-COV-2 Induced Pneumonia Detection
DOI:
https://doi.org/10.4108/eetpht.10.5581Keywords:
CNN, SARS-COV-2, Healthcare Diagnosis, Covid-19-Related Lung Infection, Lightweight CNNAbstract
INTRODUCTION: The SARS-COV-2 pandemic has led to a significant increase in the number of infected individuals and a considerable loss of lives. Identifying SARS-COV-2-induced pneumonia cases promptly is crucial for controlling the virus's spread and improving patient care. In this context, chest X-ray imaging has become an essential tool for detecting pneumonia caused by the novel coronavirus.
OBJECTIVES: The primary goal of this research is to differentiate between pneumonia cases induced specifically by the SARS-COV-2 virus and other types of pneumonia or healthy cases. This distinction is vital for the effective treatment and isolation of affected patients.
METHODS: A streamlined stacked Convolutional Neural Network (CNN) architecture was employed for this study. The dataset, meticulously curated from Johns Hopkins University's medical database, comprised 2292 chest X-ray images. This included 542 images of COVID-19-infected cases and 1266 non-COVID cases for the training phase, and 167 COVID-infected images plus 317 non-COVID images for the testing phase. The CNN's performance was assessed against a well-established CNN model to ensure the reliability of the findings.
RESULTS: The proposed CNN model demonstrated exceptional accuracy, with an overall accuracy rate of 98.96%. In particular, the model achieved a per-class accuracy of 99.405% for detecting SARS-COV-2-infected cases and 98.73% for identifying non-COVID cases. These results indicate the model's significant potential in distinguishing between COVID-19-related pneumonia and other conditions.
CONCLUSION: The research validates the efficacy of using a specialized CNN architecture for the rapid and precise identification of SARS-COV-2-induced pneumonia from chest X-ray images. The high accuracy rates suggest that this method could be a valuable tool in the ongoing fight against the COVID-19 pandemic, aiding in the swift diagnosis and effective treatment of patients.
Downloads
References
Xie, X., Zhong, Z., Zhao, W., Zheng, C., Wang, F., & Liu, J. (2020). Chest CT for Typi-cal Coronavirus Disease 2019 (SARS-COV-2) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology, 296(2), E41-E45. https://doi.org/10.1148/radiol.2020200343 DOI: https://doi.org/10.1148/radiol.2020200343
Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., & Ji, W. (2020). Sensitivity of Chest CT for SARS-COV-2: Comparison to RT-PCR. Radiology, 296(2), E115-E117. https://doi.org/10.1148/radiol.2020200432 DOI: https://doi.org/10.1148/radiol.2020200432
Eastin, C., & Eastin, T. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The Journal Of Emergency Medicine, 58(4), 711-712. https://doi.org/10.1016/j.jemermed.2020.04.004 DOI: https://doi.org/10.1016/j.jemermed.2020.04.004
Swapnarekha, H., Behera, H., Nayak, J., & Naik, B. (2020). Role of intelligent compu-ting in SARS-COV-2 prognosis: A state-of-the-art review. Chaos, Solitons & Frac-tals, 138, 109947. https://doi.org/10.1016/j.chaos.2020.109947 DOI: https://doi.org/10.1016/j.chaos.2020.109947
Mohamadou, Y., Halidou, A., & Kapen, P. (2020). A review of mathematical modeling, artificial intelligence, and datasets used in the study, prediction, and management of SARS-COV-2. Applied Intelligence, 50(11), 3913-3925. https://doi.org/10.1007/s10489-020-01770-9 DOI: https://doi.org/10.1007/s10489-020-01770-9
Yan, T., Wong, P., Ren, H., Wang, H., Wang, J., & Li, Y. (2020). The automatic distinc-tion between SARS-COV-2 and common pneumonia using multi-scale convolutional neural network on chest CT scans. Chaos, Solitons & Fractals, 140, 110153. https://doi.org/10.1016/j.chaos.2020.110153 DOI: https://doi.org/10.1016/j.chaos.2020.110153
Li, Y., Zhang, Z., Dai, C., Dong, Q., & Badrigilan, S. (2020). Accuracy of deep learning for automated detection of pneumonia using chest X-ray images: A systematic review and meta-analysis. Computers In Biology and Medicine, 123, 103898. https://doi.org/10.1016/j.compbiomed.2020.103898 DOI: https://doi.org/10.1016/j.compbiomed.2020.103898
Elaziz, M., Hosny, K., Salah, A., Darwish, M., Lu, S., & Sahlol, A. (2020). New ma-chine learning method for image-based diagnosis of SARS-COV-2 . PLOS ONE, 15(6), e0235187. https://doi.org/10.1371/journal.pone.0235187 DOI: https://doi.org/10.1371/journal.pone.0235187
Khandual, A., Dutta, K., Lenka, R., Nayak, S., & Bhoi, A. (2021). MED-NET: a novel approach to ECG anomaly detection using LSTM auto-encoders. International Journal Of Computer Applications In Technology, 65(4), 343. https://doi.org/10.1504/ijcat.2021.10040403 DOI: https://doi.org/10.1504/IJCAT.2021.10040403
Gupta, P., Saxena, N., Sharma, M., & Tripathi, J. (2018). Deep Neural Network for Human Face Recognition. International Journal Of Engineering And Manufactur-ing, 8(1), 63-71. https://doi.org/10.5815/ijem.2018.01.06 DOI: https://doi.org/10.5815/ijem.2018.01.06
Lenka, R., Dutta, K., Khandual, A., & Nayak, S. (2020). Bio-Medical Image Pro-cessing. Examining Fractal Image Processing And Analysis, 158-169. https://doi.org/10.4018/978-1-7998-0066-8.ch007 DOI: https://doi.org/10.4018/978-1-7998-0066-8.ch007
Cheng, J., Ni, D., Chou, Y., Qin, J., Tiu, C., & Chang, Y. et al. (2016). Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Scientific Reports, 6(1). https://doi.org/10.1038/srep24454 DOI: https://doi.org/10.1038/srep24454
Reid, S., Tibshirani, R., & Friedman, J. (2016). A study of error variance estimation in Lasso regression. Statistica Sinica. https://doi.org/10.5705/ss.2014.042 DOI: https://doi.org/10.5705/ss.2014.042
Hara, K., Saito, D., & Shouno, H. (2015). Analysis of function of rectified linear unit used in deep learning. 2015 International Joint Conference On Neural Networks (IJCNN). https://doi.org/10.1109/ijcnn.2015.7280578 DOI: https://doi.org/10.1109/IJCNN.2015.7280578
Dubey, A.K. and Jain, V. (2019). Comparative Study of Convolution Neural Network's ReLu and Leaky-ReLu Activation Functions. In Applications of Computing, Automation and Wireless Systems in Electrical Engineering Springer, pp. 873-880. https://arxiv.org/pdf/2109.14545.pdf DOI: https://doi.org/10.1007/978-981-13-6772-4_76
Wanto, A., Windarto, A., Hartama, D., & Parlina, I. (2017). Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density. IJISTECH (International Journal Of Information System & Technology), 1(1), 43. https://doi.org/10.30645/ijistech.v1i1.6 DOI: https://doi.org/10.30645/ijistech.v1i1.6
Ramos, D., Franco-Pedroso, J., Lozano-Diez, A., & Gonzalez-Rodriguez, J. (2018). Deconstructing Cross-Entropy for Probabilistic Binary Classifiers. Entropy, 20(3), 208. https://doi.org/10.3390/e20030208 DOI: https://doi.org/10.3390/e20030208
Diederik, P., Kingma and Jimmy Lei Ba. (2015). Adam: A Method for Stochastic Op-timization. International Conference on Learning Representations, pp. 1-13. https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_resource/content/1/adam_pres.pdf
Boltzmann, L. (1974). The Second Law of Thermodynamics. Theoretical Physics And Philosophical Problems, 13-32. https://doi.org/10.1007/978-94-010-2091-6_2 DOI: https://doi.org/10.1007/978-94-010-2091-6_2
Rowlinson *, J. (2005). The Maxwell–Boltzmann distribution. Molecular Phys-ics, 103(21-23), 2821-2828. https://doi.org/10.1080/002068970500044749 DOI: https://doi.org/10.1080/002068970500044749
Luque, A., Carrasco, A., Martín, A., & de las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion ma-trix. Pattern Recognition, 91, 216-231. https://doi.org/10.1016/j.patcog.2019.02.023 DOI: https://doi.org/10.1016/j.patcog.2019.02.023
Goutte, C., & Gaussier, E. (2005). A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. Lecture Notes In Computer Science, 345-359. https://doi.org/10.1007/978-3-540-31865-1_25 DOI: https://doi.org/10.1007/978-3-540-31865-1_25
Kumar, A., Sarkar, S., & Pradhan, C. (2019). Malaria Disease Detection Using CNN Technique with SGD, RMSprop and ADAM Optimizers. Studies In Big Data, 211-230. https://doi.org/10.1007/978-3-030-33966-1_11 DOI: https://doi.org/10.1007/978-3-030-33966-1_11
Huk, M. (2020). Stochastic Optimization of Contextual Neural Networks with RMSprop. In Asian Conference on Intelligent Information and Database Systems Springer, Cham pp. 343-352. DOI: https://doi.org/10.1007/978-3-030-42058-1_29
Chouhan, V., Singh, S., Khamparia, A., Gupta, D., Tiwari, P., & Moreira, C. et al. (2020). A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images. Applied Sciences, 10(2), 559. https://doi.org/10.3390/app10020559 DOI: https://doi.org/10.3390/app10020559
Satpathy, S., Mangla, M., Sharma, N., Deshmukh, H., & Mohanty, S. (2021). Predicting mortality rate and associated risks in SARS-COV-2 patients. Spatial Information Re-search, 29(4), 455-464. https://doi.org/10.1007/s41324-021-00379-5 DOI: https://doi.org/10.1007/s41324-021-00379-5
Khadidos, A., Khadidos, A., Kannan, S., Natarajan, Y., Mohanty, S., & Tsaramirsis, G. (2020). Analysis of SARS-COV-2 Infections on a CT Image Using DeepSense Mod-el. Frontiers In Public Health, 8. https://doi.org/10.3389/fpubh.2020.599550 DOI: https://doi.org/10.3389/fpubh.2020.599550
Dutta, K., & Gupta, P. (2022, December). Reso-Net: Generic Image Resolution En-hancement Using Convolutional Autoencoders. In International Conference on Intelli-gent Systems and Machine Learning (pp. 298-308). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-35078-8_25
Sah S, Surendiran B, Dhanalakshmi R, Yamin M. SARS-CoV-2 cases prediction using SARIMAX Model by tuning hyperparameter through grid search cross-validation ap-proach. Expert Syst. 2022 Jul 15:e13086. doi: 10.1111/exsy.13086. DOI: https://doi.org/10.1111/exsy.13086
Shankar, K., Mohanty, S.N., Yadav, K. et al. Automated SARS-COV-2 diagnosis and classification using convolutional neural network with fusion based feature extraction model. Cogn Neurodyn (2021). https://doi.org/10.1007/s11571-021-09712-y DOI: https://doi.org/10.1007/s11571-021-09712-y
Sah, S., Surendiran, B., Dhanalakshmi, R., Mohanty, S. N., Alenezi, F., & Polat, K. (2022). Forecasting SARS-COV-2 Pandemic Using Prophet, ARIMA, and Hybrid Stacked LSTM-GRU Models in India. Computational and Mathematical Methods in Medicine, 2022, 1–19. https://doi.org/10.1155/2022/1556025 DOI: https://doi.org/10.1155/2022/1556025
Shome D, Kar T, Mohanty SN, Tiwari P, Muhammad K, AlTameem A, Zhang Y, Saudagar AKJ. COVID-Transformer: Interpretable SARS-COV-2 Detection Using Vi-sion Transformer for Healthcare. Int J Environ Res Public Health. 2021 Oct 21;18(21):11086. doi: 10.3390/ijerph182111086. DOI: https://doi.org/10.3390/ijerph182111086
Gupta M., Jain R., Taneja S., Chaudhary G., Khari M. and Verdú E., Real-time meas-urement of the uncertain epidemiological appearances of SARS-COV-2 infections, Ap-plied Soft Computing, vol.101, pp.107039, 2021. DOI: https://doi.org/10.1016/j.asoc.2020.107039
Rajagopal A., Joshi G.P., Ramachandran R., Subhalakshmi R. T., Khari M., Jha S, and You J., A deep learning model based on multi-objective particle swarm optimization for scene classification in unmanned aerial vehicles, IEEE Access, vol.8, pp.135383-135393, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3011502
Yousef, R., Gupta, G., Yousef, N. and Khari, M., A holistic overview of deep learning approach in medical imaging, Multimedia Systems, vol.28, Issue.3, pp.881-914, 2022. DOI: https://doi.org/10.1007/s00530-021-00884-5
Adil Khadidos, A Robust and Computationally Faser Approach to SARS-COV-2 Diagnosis using Shallow Convolutional Neural Architecture, Paper ID: 12A13Q Volume 12 Issue 13
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Koustav Dutta, Rasmita Lenka, Priya Gupta, Aarti Goel, Janjhyam Venkata Naga Ramesh
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.