Enhancing Disease Diagnosis: Statistical Analysis of Haematological Parameters in Sickle Cell Patients, Integrating Predictive Analytics





Haemoglobin, Sickle Cell Disease, RBC, WBC, Hemoglobin, Reticulocyte, Bilirubin, Machine Learning, Regression, Clinical approach


Sickle cell disease (SCD) affects 30 million people worldwide, causing a range of symptoms from mild to severe, including Vaso occlusive crises (VOC). SCD leads to damaging cycles of sickling and desickling of red blood cells due to HbS polymer formation, resulting in chronic haemolytic anaemia and tissue hypoxia. We propose using machine learning to categorize SCD patients based on haemoglobin, reticulocyte count, and LDH levels, crucial markers of hemolysis. Statistical analysis, particularly Linear Regression, demonstrates how haemoglobin depletion occurs using LDH and reticulocyte parameters.

Bilirubin and haemoglobin, two integral biomarkers in clinical biochemistry and haematology, serve distinct yet interconnected roles in human physiology. Bilirubin, a product of heme degradation, is a critical indicator of liver function and various hepatic disorders, while haemoglobin, found in red blood cells, is responsible for oxygen transport throughout the body. Understanding the statistical relationship between these biomarkers has far-reaching clinical implications, enabling improved diagnosis, prognosis, and patient care. This research paper conducts a comprehensive statistical analysis of bilirubin and haemoglobin using various regression techniques to elucidate their intricate association. The primary objective of this study is to characterize the relationship between bilirubin and haemoglobin. Through meticulous data analysis, we explore whether these biomarkers exhibit positive, negative, or no correlation. Additionally, this research develops predictive models for estimating haemoglobin levels based on bilirubin data, offering valuable tools for healthcare professionals in clinical practice.


Download data is not yet available.


V. Narwal et al., “Bilirubin detection by different methods with special emphasis on biosensing: A review,” Sensing and Bio-Sensing Research, vol. 33. Elsevier BV, p. 100436, Aug. 2021. doi: 10.1016/j.sbsr.2021.100436. DOI: https://doi.org/10.1016/j.sbsr.2021.100436

A. Atipimonpat et al., “Extracellular vesicles from thalassemia patients carry iron-containing ferritin and hemichrome that promote cardiac cell proliferation,” Annals of Hematology, vol. 100, no. 8. Springer Science and Business Media LLC, pp. 1929–1946, Jun. 21, 2021. doi: 10.1007/s00277-021-04567-z DOI: https://doi.org/10.1007/s00277-021-04567-z

B. Sen, A. Ganesh, A. Bhan, S. Dixit and A. Goyal, "Machine learning based Diagnosis and Classification Of Sickle Cell Anemia in Human RBC," 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 2021, pp. 753-758, doi: 10.1109/ICICV50876.2021.9388610. DOI: https://doi.org/10.1109/ICICV50876.2021.9388610

Petrović, N., Moyà-Alcover, G., Jaume-i-Capó, A., González-Hidalgo, M.: Sickle-cell disease diagnosis support selecting the most appropriate machine learning method: Towards a general and interpretable approach for cell morphology analysis from microscopy images, http://dx.doi.org/10.1016/j.compbiomed.2020.104027, (2020). https://doi.org/10.1016/j.compbiomed.2020.104027. DOI: https://doi.org/10.1016/j.compbiomed.2020.104027

Nkpordee, L., & Wonu, N. (2022). Statistical modelling of genetic disorder in Nigeria: a study of sickle cell disease. Faculty of Natural and Applied Sciences Journal of Scientific Innovations, 3(2), 10–19. Retrieved from https://www.fnasjournals.com/index.php/FNAS-JSI/article/view/27

Patel, A., Gan, K., Li, A. A., Weiss, J., Nouraie, M., Tayur, S., & Novelli, E. M. (2020). Machine‐learning algorithms for predicting hospital re‐admissions in sickle cell disease. In British Journal of Haematology (Vol. 192, Issue 1, pp. 158–170). Wiley. https://doi.org/10.1111/bjh.17107. DOI: https://doi.org/10.1111/bjh.17107

Yang, F., Banerjee, T., Narine, K., & Shah, N. (2018). Improving pain management in patients with sickle cell disease from physiological measures using machine learning techniques. In Smart Health (Vols. 7–8, pp. 48–59). Elsevier BV. https://doi.org/10.1016/j.smhl.2018.01.002 DOI: https://doi.org/10.1016/j.smhl.2018.01.002

Yeruva, S., Gowtham, B. P., Chandana, Y. H., Varalakshmi, M. S., & Jain, S. (2021). Prediction of Anemia Disease Using Classification Methods. In Machine Learning Technologies and Applications (pp. 1–11). Springer Singapore. https://doi.org/10.1007/978-981-33-4046-6_1 DOI: https://doi.org/10.1007/978-981-33-4046-6_1

Dean, C. L., Maier, C. L., Chonat, S., Chang, A., Carden, M. A., El Rassi, F., McLemore, M. L., Stowell, S. R., & Fasano, R. M. (2019). Challenges in the treatment and prevention of delayed hemolytic transfusion reactions with hyperhemolysis in sickle cell disease patients. In Transfusion (Vol. 59, Issue 5, pp. 1698–1705). Wiley. https://doi.org/10.1111/trf.15227 DOI: https://doi.org/10.1111/trf.15227

J. Wing et al., "A Low-Cost, Point-of-Care Sickle Cell Anemia Screening Device for Use in Low and Middle-Income Countries," 2019 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 2019, pp. 1-4, doi: 10.1109/GHTC46095.2019.9033017. DOI: https://doi.org/10.1109/GHTC46095.2019.9033017

Stone, E.F., Avecilla, S.T., Wuest, D.L., Lomas-Francis, C., Westhoff, C.M., Diuguid, D.L., Sadelain, M., Boulad, F., Shi, P.A.: Severe delayed hemolytic transfusion reaction due to anti-Fy3 in a patient with sickle cell disease undergoing red cell exchange prior to hematopoietic progenitor cell collection for gene therapy, http://dx.doi.org/10.3324/haematol.2020.253229, (2020). https://doi.org/10.3324/haematol.2020.253229 DOI: https://doi.org/10.3324/haematol.2020.253229

Ranjana, S., R. Manimegala, and K. Priya.: Automatic Classification of Sickle Cell Anemia using Random Forest Classifier. In: Proceedings of the European Conference on Medical Advances, LNCS, vol. 9999, pp. 2020. Springer, Heidelberg (2020).

Patgiri, C., Ganguly, A.: Adaptive thresholding technique based classification of red blood cell and sickle cell using Naïve Bayes Classifier and K-nearest neighbor classifier,http://dx.doi.org/10.1016/j.bspc.2021.102745,(2021).https://doi.org/10.1016/j.bspc.2021.102745. DOI: https://doi.org/10.1016/j.bspc.2021.102745

Y. Zhou et al., “MACHINE LEARNING MODELS FOR PREDICTING ACUTE KIDNEY INJURY IN PATIENTS WITH SEPSIS-ASSOCIATED ACUTE RESPIRATORY DISTRESS SYNDROME,” Shock, vol. 59, no. 3. Ovid Technologies (Wolters Kluwer Health), pp. 352–359, Jan. 10, 2023. doi: 10.1097/shk.0000000000002065. DOI: https://doi.org/10.1097/SHK.0000000000002065

C. Jian et al., “Predicting delayed methotrexate elimination in pediatric acute lymphoblastic leukemia patients: an innovative web-based machine learning tool developed through a multicenter, retrospective analysis,” BMC Medical Informatics and Decision Making, vol. 23, no. 1. Springer Science and Business Media LLC, Aug. 03, 2023. doi: 10.1186/s12911-023-02248-7. DOI: https://doi.org/10.1186/s12911-023-02248-7

S. Urban et al., “Machine Learning Approach to Understand Worsening Renal Function in Acute Heart Failure,” Biomolecules, vol. 12, no. 11. MDPI AG, p. 1616, Nov. 02, 2022. doi: 10.3390/biom12111616. DOI: https://doi.org/10.3390/biom12111616

Md. M. M. Miah et al., “Non-Invasive Bilirubin Level Quantification and Jaundice Detection by Sclera Image Processing,” 2019 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, Oct. 2019. doi: 10.1109/ghtc46095.2019.9033059. DOI: https://doi.org/10.1109/GHTC46095.2019.9033059

M. Azhar et al., "Hemolysis Detection in Sub-Microliter Volumes of Blood Plasma," in IEEE Transactions on Biomedical Engineering, vol. 67, no. 5, pp. 1243-1252, May 2020, doi: 10.1109/TBME.2019.2934517. DOI: https://doi.org/10.1109/TBME.2019.2934517

S. K. Patel, J. Surve, J. Parmar, A. Natesan and V. Katkar, "Graphene-Based Metasurface Refractive Index Biosensor for Hemoglobin Detection: Machine Learning Assisted Optimization," in IEEE Transactions on NanoBioscience, vol. 22, no. 2, pp. 430-437, April 2023, doi: 10.1109/TNB.2022.3201237. DOI: https://doi.org/10.1109/TNB.2022.3201237

P. Appiahene, J. W. Asare, E. T. Donkoh, G. Dimauro, and R. Maglietta, “Detection of iron deficiency anemia by medical images: a comparative study of machine learning algorithms,” BioData Mining, vol. 16, no. 1. Springer Science and Business Media LLC, Jan. 24, 2023. doi: 10.1186/s13040-023-00319-z. DOI: https://doi.org/10.1186/s13040-023-00319-z

D. C. E. Saputra, K. Sunat, and T. Ratnaningsih, “A New Artificial Intelligence Approach Using Extreme Learning Machine as the Potentially Effective Model to Predict and Analyze the Diagnosis of Anemia,” Healthcare, vol. 11, no. 5. MDPI AG, p. 697, Feb. 26, 2023. doi: 10.3390/healthcare11050697 DOI: https://doi.org/10.3390/healthcare11050697

Y. Zou et al., “Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease,” Renal Failure, vol. 44, no. 1. Informa UK Limited, pp. 562–570, Apr. 04, 2022. doi: 10.1080/0886022x.2022.2056053. DOI: https://doi.org/10.1080/0886022X.2022.2056053

X. Zhang, S. Chen, K. Lai, Z. Chen, J. Wan, and Y. Xu, “Machine learning for the prediction of acute kidney injury in critical care patients with acute cerebrovascular disease,” Renal Failure, vol. 44, no. 1. Informa UK Limited, pp. 43–53, Feb. 15, 2022. doi: 10.1080/0886022x.2022.2036619. DOI: https://doi.org/10.1080/0886022X.2022.2036619

N. Consul, S. Javed-Tayyab, A. C. Morani, C. O. Menias, M. G. Lubner, and K. M. Elsayes, “Iron-containing pathologies of the spleen: magnetic resonance imaging features with pathologic correlation,” Abdominal Radiology, vol. 46, no. 3. Springer Science and Business Media LLC, pp. 1016–1026, Sep. 11, 2020. doi: 10.1007/s00261-020-02709-x. DOI: https://doi.org/10.1007/s00261-020-02709-x

P. Dreischer, M. Duszenko, J. Stein, and T. Wieder, “Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells,” Cells, vol. 11, no. 3. MDPI AG, p. 503, Feb. 01, 2022. doi: 10.3390/cells11030503. DOI: https://doi.org/10.3390/cells11030503

B. D. Kamath-Rayne, E. A. DeFranco, and M. P. Marcotte, “Antenatal Steroids for Treatment of Fetal Lung Immaturity After 34 Weeks of Gestation,” Obstetrics & Gynecology, vol. 119, no. 5. Ovid Technologies (Wolters Kluwer Health), pp. 909–916, May 2012. doi: 10.1097/aog.0b013e31824ea4b2. Available: http://dx.doi.org/10.1097/AOG.0b013e31824ea4b2 DOI: https://doi.org/10.1097/AOG.0b013e31824ea4b2




How to Cite

Dash B, Naveen S, UM A. Enhancing Disease Diagnosis: Statistical Analysis of Haematological Parameters in Sickle Cell Patients, Integrating Predictive Analytics. EAI Endorsed Trans Perv Health Tech [Internet]. 2024 Apr. 9 [cited 2024 May 20];10. Available from: https://publications.eai.eu/index.php/phat/article/view/5691