Medical Data Analytics and Wearable Devices
DOI:
https://doi.org/10.4108/eetsc.v6i4.2264Keywords:
Wearable Technology, Decision Making, Rehabilitation, Artificial Technology, Data AnalyticsAbstract
Clinical decision-making may be directly impacted by wearable application. Some people think that wearable technologies, such as patient rehabilitation outside of hospitals, could boost patient care quality while lowering costs. The big data produced by wearable technology presents researchers with both a challenge and an opportunity to expand the use of artificial intelligence (AI) techniques on these data. By establishing new healthcare service systems, it is possible to organise diverse information and communications technologies into service linkages. This includes emerging smart systems, cloud computing, social networks, and enhanced sensing and data analysis techniques. The characteristics and features of big data, the significance of big data analytics in the healthcare industry, and a discussion of the effectiveness of several machine learning algorithms employed in big data analytics served as our conclusion.
Downloads
References
Chan, M., Estève, D., Fourniols, J. Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artificial intelligence in medicine, 56(3), 137-156. DOI: https://doi.org/10.1016/j.artmed.2012.09.003
Ristevski, B., & Chen, M. (2018). Big data analytics in medicine and healthcare. Journal of integrative bioinformatics, 15(3). DOI: https://doi.org/10.1515/jib-2017-0030
Viceconti, M., Hunter, P., & Hose, R. (2015). Big data, big knowledge: big data for personalized healthcare. IEEE journal of biomedical and health informatics, 19(4), 1209-1215. DOI: https://doi.org/10.1109/JBHI.2015.2406883
Witt, D. R., Kellogg, R. A., Snyder, M. P., & Dunn, J. (2019). Windows into human health through wearables data analytics. Current opinion in biomedical engineering, 9, 28-46. DOI: https://doi.org/10.1016/j.cobme.2019.01.001
Eapen, Z. J., Turakhia, M. P., McConnell, M. V., Graham, G., Dunn, P., Tiner, C., ... & Wayte, P. (2016). Defining a mobile health roadmap for cardiovascular health and disease. Journal of the American Heart Association, 5(7), e003119. DOI: https://doi.org/10.1161/JAHA.115.003119
Neubeck, L., Lowres, N., Benjamin, E. J., Freedman, S. B., Coorey, G., & Redfern, J. (2015). The mobile revolution—using smartphone apps to prevent cardiovascular disease. Nature Reviews Cardiology, 12(6), 350-360. DOI: https://doi.org/10.1038/nrcardio.2015.34
Li, X., Dunn, J., Salins, D., Zhou, G., Zhou, W., Schüssler-Fiorenza Rose, S. M., ... & Snyder, M. P. (2017). Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information. PLoS biology, 15(1), e2001402. DOI: https://doi.org/10.1371/journal.pbio.2001402
Bhoi, S. K., Panda, S. K., Patra, B., Pradhan, B., Priyadarshinee, P., Tripathy, S., ... & Khilar, P. M. (2018, December). FallDS-IoT: a fall detection system for elderly healthcare based on IoT data analytics. In 2018 International Conference on Information Technology (ICIT) (pp. 155-160). IEEE. DOI: https://doi.org/10.1109/ICIT.2018.00041
Kim, S., Park, M., Lee, S., & Kim, J. (2020). Smart home forensics—data analysis of IoT devices. Electronics, 9(8), 1215. DOI: https://doi.org/10.3390/electronics9081215
Rajawat, A. S., Bedi, P., Goyal, S. B., Alharbi, A. R., Aljaedi, A., Jamal, S. S., & Shukla, P. K. (2021). Fog big data analysis for IoT sensor application using fusion deep learning. Mathematical Problems in Engineering, 2021. DOI: https://doi.org/10.1155/2021/6876688
Aazam, M., & Huh, E. N. (2014, August). Fog computing and smart gateway based communication for cloud of things. In 2014 International conference on future internet of things and cloud (pp. 464-470). IEEE. DOI: https://doi.org/10.1109/FiCloud.2014.83
Lengyel, L., Ekler, P., Ujj, T., Balogh, T., & Charaf, H. (2015). SensorHUB: An IoT driver framework for supporting sensor networks and data analysis. International Journal of Distributed Sensor Networks, 11(7), 454379. DOI: https://doi.org/10.1155/2015/454379
Benhlima, L. (2018). Big data management for healthcare systems: architecture, requirements, and implementation. Advances in bioinformatics, 2018. DOI: https://doi.org/10.1155/2018/4059018
Shakil, K. A., Zareen, F. J., Alam, M., & Jabin, S. (2020). BAMHealthCloud: A biometric authentication and data management system for healthcare data in cloud. Journal of King Saud University-Computer and Information Sciences, 32(1), 57-64. DOI: https://doi.org/10.1016/j.jksuci.2017.07.001
Alam, B., Doja, M. N., Alam, M., & Mongia, S. (2013). 5-layered architecture of cloud database management system. AASRI Procedia, 5, 194-199. DOI: https://doi.org/10.1016/j.aasri.2013.10.078
Li, X., Huang, X., Li, C., Yu, R., & Shu, L. (2019). EdgeCare: Leveraging edge computing for collaborative data management in mobile healthcare systems. IEEE Access, 7, 22011-22025. DOI: https://doi.org/10.1109/ACCESS.2019.2898265
Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2017). Mobile edge computing: A survey. IEEE Internet of Things Journal, 5(1), 450-465. DOI: https://doi.org/10.1109/JIOT.2017.2750180
Huang, X., Yu, R., Kang, J., & Zhang, Y. (2017). Distributed reputation management for secure and efficient vehicular edge computing and networks. IEEE Access, 5, 25408-25420. DOI: https://doi.org/10.1109/ACCESS.2017.2769878
Dimitrov, D. V. (2019). Blockchain applications for healthcare data management. Healthcare informatics research, 25(1), 51-56. DOI: https://doi.org/10.4258/hir.2019.25.1.51
Al Omar, A., Rahman, M. S., Basu, A., & Kiyomoto, S. (2017, December). Medibchain: A blockchain based privacy preserving platform for healthcare data. In International conference on security, privacy and anonymity in computation, communication and storage (pp. 534-543). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-72395-2_49
Demirkan, H. (2013). A smart healthcare systems framework. It Professional, 15(5), 38-45. DOI: https://doi.org/10.1109/MITP.2013.35
Yin, H., Akmandor, A. O., Mosenia, A., & Jha, N. K. (2018). Smart healthcare. Foundations and Trends® in Electronic Design Automation, 12(4), 401-466. DOI: https://doi.org/10.1561/1000000054
Oueida, S., Kotb, Y., Aloqaily, M., Jararweh, Y., & Baker, T. (2018). An edge computing based smart healthcare framework for resource management. Sensors, 18(12), 4307. DOI: https://doi.org/10.3390/s18124307
Newaz, A. I., Sikder, A. K., Rahman, M. A., & Uluagac, A. S. (2019, October). Health guard: A machine learning-based security framework for smart healthcare systems. In 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS) (pp. 389-396). IEEE. DOI: https://doi.org/10.1109/SNAMS.2019.8931716
Alamri, A. (2018). Monitoring system for patients using multimedia for smart healthcare. IEEE Access, 6, 23271-23276. DOI: https://doi.org/10.1109/ACCESS.2018.2826525
Haghi, M., Thurow, K., & Stoll, R. (2017). Wearable devices in medical internet of things: scientific research and commercially available devices. Healthcare informatics research, 23(1), 4-15. DOI: https://doi.org/10.4258/hir.2017.23.1.4
Son, D., Lee, J., Qiao, S., Ghaffari, R., Kim, J., Lee, J. E., ... & Kim, D. H. (2014). Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature nanotechnology, 9(5), 397-404. DOI: https://doi.org/10.1038/nnano.2014.38
Castillejo, P., Martinez, J. F., Rodriguez-Molina, J., & Cuerva, A. (2013). Integration of wearable devices in a wireless sensor network for an E-health application. IEEE Wireless Communications, 20(4), 38-49. DOI: https://doi.org/10.1109/MWC.2013.6590049
Cheng, H. T., & Zhuang, W. (2010). Bluetooth-enabled in-home patient monitoring system: Early detection of Alzheimer's disease. IEEE Wireless Communications, 17(1), 74-79. DOI: https://doi.org/10.1109/MWC.2010.5416353
Chung, W. Y., Lee, Y. D., & Jung, S. J. (2008, August). A wireless sensor network compatible wearable u-healthcare monitoring system using integrated ECG, accelerometer and SpO2. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1529-1532). IEEE.
Ravi, D., Wong, C., Lo, B., & Yang, G. Z. (2016). A deep learning approach to on-node sensor data analytics for mobile or wearable devices. IEEE journal of biomedical and health informatics, 21(1), 56-64. DOI: https://doi.org/10.1109/JBHI.2016.2633287
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Iswarya Manoharan, Jeslin Libisha J, Sowmiya E C, Harishma S., John Amose
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.