Performance Analysis of Fractional Earthworm Optimization Algorithm for Optimal Routing in Wireless Sensor Networks
DOI:
https://doi.org/10.4108/eai.21-4-2021.169419Keywords:
clustering, routing, optimization, earthworm optimization algorithm, fractional calculusAbstract
In Wireless Sensor Networks (WSNs), the data transmission from the sensing node to the sink node consumes a lot of energy as the number of communications increases, so the battery life of nodes is limited, and the network also has a limited lifetime. Recent studies show that the bio-inspired meta-heuristic algorithms for solving engineering problems such as energy reduction in autonomous networks in the multidisciplinary areas of WSN, Internet of Things (IoT) and Machine learning models. Hence to increase Network lifetime, optimized clustering and energy-efficient routing techniques are required. In all applications of WSN, not only energy-efficient but also delay and throughput of the network are important for efficient transmission of data to the destination. This paper analyses optimized clustering by selecting cluster heads based on fractional calculus earthworm optimization algorithm (FEWA). The route from cluster heads to sink node is selected based on the fit factor. This paper's main intention is to provide an extensive comparative study of the FEWA with all standard optimization-based clustering and routing techniques. This method's performance is compared with existing optimized clustering methods like GA, PSO, ACO, DE and EWO in terms of the number of energy, delay, and throughput. At the end of 1000 iterations, the analysis shows that the FEWA outperforms existing methods with maximum average remaining energy of the nodes as 0.216J, the minimum average delay of 0.208 sec and maximum average throughput of 88.57% for 100 nodes.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.