Efficient Framework for Sentiment Classification Using Apriori Based Feature Reduction
DOI:
https://doi.org/10.4108/eai.16-2-2021.168715Keywords:
Sentiment Classification, Association Rule Mining, Apriori Algorithm, Feature Selection, Machine LearningAbstract
This paper proposes a novel feature selection method for Sentiment Classification. UCI ML Dataset is selected having a textual review from three domains (IMDB Movie, AMAZON Product, and YELP restaurant). Text pre -processing and feature selection technique is applied to the dataset. A Novel Feature Selection approach using Association Rule Mining is presented in which Sentence is converted in binary form and Apriori Algorithm is applied to reduce the dataset. Four Machine Learning algorithms: Naïve Bayes, Support Vector Machine, Random Forest & Logistic Regression to implement experiment. The proposed approach shows an accuracy improvement of 4.2%, 4.9% & 5.9% for IMDB, Amazon & Yelp domain datasets, respectively. Compared with the Genetic Algorithm, Principal Component Analysis, Chi-Square, and Relief based feature selection, the proposed method shows an accuracy improvement of 9.8%, 0.4%, 0.6% & 1.9%, respectively.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.