Master-Slave TLBO Algorithm for Constrained Global Optimization Problems
DOI:
https://doi.org/10.4108/eai.26-5-2020.166292Keywords:
Master-slave TLBO algorithm, Parallel Evolutionary Algorithms, GPGPU, Constrained benchmark functions, Optimization problemsAbstract
INTRODUCTION: The teaching-learning based optimization (TLBO) algorithm is a recently developed algorithm. The proposed work presents a design of a master-slave TLBO algorithm. OBJECTIVES: This research aims to design a master-slave TLBO algorithm to improve its performance and system utilization for CEC2006 single-objective benchmark functions. METHODS: The proposed approach implemented using OpenMP and CUDA C, a hybrid programming approach to enhance the utilization of the system’s computational resources. The device utilization and performance of the proposed approach evaluated using CEC2006 benchmark functions. RESULTS: The proposed approach obtains best results in significantly reduced time for CEC2006 benchmark functions. The maximum speed-up achieved is 30.14X. The average GPGPU utilization is 90% and the average utilization of logical processors is more than 90%. CONCLUSION: The master-slave TLBO algorithm improves the utilization of computational resources significantly and obtains the best results for CEC2006 benchmark functions.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.