Wavelet and kernel dimensional reduction on arrhythmia classification of ECG signals
DOI:
https://doi.org/10.4108/eai.13-7-2018.163095Keywords:
Electrocardiogram, MIT/BIH, Discrete Wavelet Transform, Kernel, classifiersAbstract
Electrocardiogram (ECG) monitoring is continuously required to detect cardiac ailments. At times it is challenging to interpret the differences in the P- QRS-T curve. The proposed approach aims to show the excellence of kernel capabilities of Kernel Principal Component Analysis (KPCA) and Kernel Independent Component Analysis (KICA) in the wavelet domain. In this work, experiments are performed using five different categories of cardiac beats. The supervised classifiers like feed-forward neural network (FNN), backpropagation neural network (BPNN), and K nearest neighbor (KNN) statistically evaluates the impact of discrete wavelet with KPCA and KICA on extracted beats. The performance evaluation also compares the outcomes with existing techniques. The obtained results justify the supremacy of the combination of wavelet, kernel, and KNN approach, yielding a 99.7 % classification success rate. The five-fold crossvalidation scheme is used for measuring the efficacy of classifiers.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.