A Competent and Novel Approach of Designing an Intelligent Image Retrieval System
DOI:
https://doi.org/10.4108/eai.13-7-2018.160538Keywords:
Content based Image retrieval (CBIR), Local Binary Pattern (LBP), Precision, Deep Learning Algorithm, Extreme learning Machine, Neural NetworksAbstract
A prominent technique used to search imperceptible images from any vast repository is denoted by Content based image retrieval (CBIR) system. The most eminent features of CBIR system are Texture, Color and Shape and in this paper these features are extracted using Local binary pattern, Color moment and Automatic segmentation process respectively. The features of these descriptors are combined for the formation of a hybrid feature vector by utilizing the process of normalization. Then, for enhancing the retrieval accuracy of the proposed system, Extreme learning machine (ELM) has been utilized as a classifier. The proposed hybrid CBIR system with ELM leads to an evolution of an intelligent system. Various evaluation metrics like Precision, Recall, Accuracy, etc. have been calculated on the proposed system on standard datasets. Average precision of 90%, 78%, 72% and 88.70% has been obtained respectively on Corel-1K, Corel-5K, Corel-10K and GHIM datasets which is significantly higher than the related techniques.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.