An Intelligent Multi-resolution and Co-occuring local pattern generator for Image Retrieval
DOI:
https://doi.org/10.4108/eai.10-6-2019.159344Keywords:
Gray level co-occurence matrix, Discrete wavelet transform, Content-based Image retrieval, Extreme learning machine, Relevance feedback, Brodatz dataset, MIT-Vistex DatasetAbstract
Content-based image retrieval (CBIR) is a methodology used to search indistinguishable images across any vast repository. Texture, Color and Shape are among the most prominent features of any CBIR system. Two texture descriptors namely Gray level Co-occurence matrix (GLCM) and Discrete wavelet transform (DWT) have been utilized here for the formation of a hybrid texture descriptor, denoted as (Co-DGLCM). To enhance the retrieval accuracy of the proposed system, a framework of an Extreme learning machine (ELM) with Relevance feedback (RF) has also been used. This technique provides simultaneously spatial relationship and information related to frequency in co-occuring local patterns of an image. Two benchmark texture databases namely Brodatz and MIT-Vistex have been tested and results are obtained in terms of accuracy, total average recall and total average precision which is 96.35% and 97.34% respectively on the two databases.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.