Unsupervised Machine Learning based Documents Clustering in Urdu
DOI:
https://doi.org/10.4108/eai.19-12-2018.156081Keywords:
Urdu, Documents clustering, Similarity Measures, K-Means AlgorithmAbstract
The volume of data on the web is growing rapidly, due to the proliferation of news sources, contents, blogs and journals etc. Like other languages, the Urdu language has also observed tremendous growth on the internet. As the volume of data is expanding, information retrieval (IR) is becoming complicated. Document clustering is an unsupervised ML approach, employed to group a huge number of dispersed documents into a small number of significant and consistent clusters, thus providing a base for indexing, IR and browsing mechanisms. Documents clustering has a long tradition in English as well as English like western languages, but Urdu lags behind in terms sophisticated natural language processing (NLP) tools and resources for documents clustering. Documents clustering becomes a challenging task in Urdu language having a rich morphology, particular structure, syntax peculiarities and cursive nature. In this study, we have developed a framework of document clustering and analysed various similarity measures for Urdu documents. We have also checked the effect of stop words removal in the process of Urdu document clustering.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.