Flexible Performance Prediction of Data Center Networks using Automatically Generated Simulation Models
DOI:
https://doi.org/10.4108/eai.24-8-2015.2260961Keywords:
performance modeling, data center networks, meta-modelingAbstract
Using different modeling and simulation approaches for predicting network performance requires extensive experience and involves a number of time consuming manual steps regarding each of the modeling formalisms. In this paper, we propose a generic approach to modeling the performance of data center networks. The approach offers multiple performance models but requires to use only a single modeling language. We propose a two-step modeling methodology, in which a high-level descriptive model of the network is built in the first step, and in the second step model-to-model transformations are used to automatically transform the descriptive model to different network simulation models. % We automatically generate three performance models defined at different levels of abstraction to analyze network throughput. By offering multiple simulation models in parallel, we provide flexibility in trading-off between the modeling accuracy and the simulation overhead. We analyze the simulation models by comparing the prediction accuracy with respect to the simulation duration. We observe, that in the investigated scenarios the solution duration of coarser simulation models is up to 300 times shorter, whereas the average prediction accuracy decreases only by 4 percent.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.