A novel dilated convolutional neural network model for road scene segmentation
DOI:
https://doi.org/10.4108/eai.27-1-2022.173164Keywords:
road scene segmentation, dilated convolutional neural network, scene understandingAbstract
This article has been retracted, and the retraction notice can be found here: http://dx.doi.org/10.4108/eai.8-4-2022.173784.
Road scene understanding is one of the important modules in the field of autonomous driving. It can provide more information about roads and play an important role in building high-precision maps and real-time planning. Among them, semantic segmentation can assign category information to each pixel of image, which is the most commonly used method in automatic driving scene understanding. However, most commonly used semantic segmentation algorithms cannot achieve a good balance between speed and precision. In this paper, a road scene segmentation model based on dilated convolutional neural network is constructed. The model consists of a front-end module and a context module. The front- end module is an improved structure of VGG-16 fused dilated convolution, and the context module is a cascade of dilated convolution layers with different expansion coefficients, which is trained by a two-stage training method. The network proposed in this paper can run in real time and ensure the accuracy to meet the requirements of practical applications, and has been verified and analyzed on Cityscapes data set.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.