Machine learning as a teaching strategy education: A review




Machine Learning, education, didactic strategy, educational impact, artificial intelligence


In this article, we present a systematic review of the literature that explores the impact of Machine Learning as a teaching strategy in the educational field. Machine Learning, a branch of artificial intelligence, has gained relevance in teaching and learning due to its ability to personalize education and improve instructional effectiveness. The systematic review focuses on identifying studies investigating how Machine Learning has been used in educational settings. Through a thorough analysis, its impact on various areas related to teaching and learning, including student performance, knowledge retention, and curricular adaptability, is examined. The findings of this review indicate that Machine Learning has proven to be an effective strategy for tailoring instruction to individual student needs. As a result, engagement and academic performance are significantly improved. Furthermore, the review underscores the importance of future research. This future research will enable a deeper understanding of how Machine Learning can optimize education and address current challenges and emerging opportunities in this evolving field. This systematic review provides valuable information for educators, curriculum designers, and educational policymakers. It also emphasizes the continuing need to explore the potential of Machine Learning to enhance teaching and learning in the digital age of the 21st century.



Marimon, M., Cabero, J., & Castañeda, L. (2022). Building knowledge in the digital era : challenges and reflections. RED. Journal of Distance Education, 22(69), 1-32.

Valladares, E., & Valarde, S. (2021). Towards the democratization of machine learning using AutoGOAL. Cuban Journal of Digital Transformation, 2(1), 1-11.

Morales-carrillo, J., Cedeño-valarezo, L., Stefano, J., & Bravo, C. (2021). Software development methodologies and their scope of application : A systematic review. Revista Ibérica de Sistemas e Tecnologias de Informação, 29-46.

Díaz, J. D. M., Chacón, V. O., & Ronda, F. J. M. (2016). The design of clinical questions in evidence-based practice. Formulation models. Global Nursing, 15(3), 431.

Aparicio, O. (2023). Artificial Intelligence and its impact on education: Transforming learning for the 21st century. International Journal of Pedagogy and Educational Innovation, 3(2), 217-229.

Rivas, B., Barrio, F., & Barri, M. (2021). Systematic analysis on the use of Augmented Reality in Early Childhood Education . EDUTEC. Electronic Journal of Educational Technology, 76, 53-73.

Garrido, J. (2023). Immersive Reality : Educational tool to develop computational thinking. Revista Latinoamericana OGMIOS, 3(8), 70-81.

Valero, J., Navarro, Á., & Larios, A. (2022). College dropout: Evaluation of different Machine Learning algorithms for its prediction. Revista de Cincias Sociales, XXVIII(3), 1-15.26 Quintanar, R., & Hernández, S. (2022). Technological Models of Adaptive Learning Applied to Education. Revista Tecnológia -Educativa Docentes 2.0, 15(1), 41-58. Modelos

Guaillazaca, C., & Hernández, V. (2020). Agricultural Product Classifier for Quality Control based on Machine Learning and Industry 4 . 0. Revista Técnico - Científica Perpectivas, 2(2), 1-8.

Chiza, L. L. (2021). Transmission Corridor Stability Margin Prediction Applying Data Mining Criteria and Machine Learning Algorithms. Technical Journal "Energy," 18(1), 37-47.

Mancilla, G., Leal, P., Sánchez, A., & Vidal, C. (2020). Factors associated to student success in online learning modality : a data mining analysis Factors associated to student success in online learning : a data mining analysis. Formación Universitaria, 13(6), 23-36.

Villalonga, P., & Samá, C. (2023). Learning strategies of online engineering students. Revista Iberoamericana de Educación a Distancia, 26(2), 237-256.

Salas, R. A. (2023). Using deep learning to analyze Facebook and Google classroom in the educational field. Pixel-Bit. Journal of Media and Education, 67, 87-122.

Francke, P., & Acosta, G. (2020). Impact of micronutrient supplementation on childhood chronic malnutrition in Peru. Revista Medica Herediana, 31(3), 148-154.

Álvarez Vega, M., Quirós Mora, L. M., & Cortés Badilla, M. V. (2020). Artificial intelligence and machine learning in medicine. Revista Medica Sinergia, 5(8), e557.

Esperanza Manrique Rojas (2020). Machine Learning: analysis of programming languages and tools for development. Revista Ibérica de Sistemas e Tecnologias de Informação, 1-15.

Briganti, G., & Le Moine, O. (2020). Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers in Medicine, 7, 4-5.

Melo, G., Coto, M., & Acosta, G. (2023). Education and Artificial Intelligence ( AI ). Revista Científica Dominio de Las Ciencias, 9(4), 1-14.

Lasso Cardona, L. A., & Conde Rodriguez, K. N. (2021). Khan Academy as a tool in the learning of mathematics and programming . Revista Interamericana de Investigación Educación y Pedagogía RIIEP, 14(1 Se-Artículos Producto De La Investigación), 225-250.

González, C. (2023). The impact of artificial intelligence on education : transforming the way we teach and learn. Qurriculum Magazine, 51-60.

González, D. (2023). The role of facebook, google and malware in the distribution of fake news: algorithms and technological escalation as media influence.

Arana, C. (2021). Artificial Intelligence Applied to Education : Achievements , Trends and Perspectives. Argentine Journal of Science and Technology, 7, 1-22.

Salmerón, Y., Enrique, H., & Murillo, W. (2023). The future of artificial intelligence for education in higher education institutions. Revista Conrado, 19(93), 27-34.

Ruipérez, J. (2020). The Learning Analytics Implementation Process. RIED. Revista Iberoamericana de Educación a Distancia, 23(2), 85-101.

Díaz, R., Machun, S., & Checa, M. (2022). Techniques and tools for virtual testing in an e-learning model. Conrado Journal, 18(3), 112-119.

Mahesh, B. (2020). Machine Learning Algorithms - A Review. International Journal of Science and Research (IJSR), 9(1), 381-386.

Gamarra, F. (2019). Modelo Basado En Machine Learning Para el neurorrendimiento académico de estudiantes universitarios. Revista Ciencia Y Tecnología Para El Desarrollo-UJCM, 5(9), 5-12.

Pérez, V., Margoth, S., Casa, B., & Agustín, M. (n.d.). Machine Learning application for the classification process of data associated with the Celina medical center. 74-91.

Perez, T. (2023). User-Centered User Interface Design : Best Practices and Trends. VICTEC. Academic and Scientific Journal, 193-200.

Ayuso del Puerto, D., & Gutiérrez Esteban, P. (2022). Artificial Intelligence as an educational resource during initial teacher training. RIED-Revista Iberoamericana de Educación a Distancia, 25(2).

Ordóñez, H., Cobos, C., & Bucheli, V. (2020). Machine learning model for predicting theft trends in Colombia. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2020(E29), 494-506.

Aboal, D., López, A., Maurizio, R., & Queraltó, P. (2021). Automation and employment in uruguay. Desarrollo y Sociedad, 2021(87), 33-72.

Obregón, L., Onofre, C., & Pareja, J. (2023). The impact of artificial intelligence in the educational field. Revista Científica Ciencias Económicas y Empresariales, 8(3), 342-354.

Algaba, D., & Peñarrocha, I. (2016). Automated evaluation experiences in PID identification and tuning. Proceedings of Las XXXVII Jornadas de Automática, 3, 957-962.

Morillo, M. del C., & González, D. (2016). Adaptive Learning. University of Valladolid.

Díaz, B., & Baquero, F. (2018). Yellow carrot ( Daucus carota L . ) as a biotechnological feed for cows Yellow carrot ( Daucus carota L .), a biotechnological. Science and Agriculture, 15(2), 1-17.

Romani, G., & Macedo, K. (2022). Implementation of the hybrid classroom and digital tools in students of a high school in Ica. Quintaesencia Revista de Educación, 13, 14-19.

Velasco, A., Guerrero, P., & Fonseca, I. (2023). Personalized education . An effective approach to learning. Ciencia Latina Revista Científica Multidisciplinar, 7(2), 1-16.

Mantilla, M., Celis, E., & Rodriguez, A. (2021). Cooperative play as a pedagogical strategy to promote good solid waste management and collection. Praxis, 17(1), 55-68.

Bedoya, J. J., Bedoya, R., & Hernández, C. (2019). Automated assessment of environmental competencies acquired by higher level students. Revista Pedagógica, 21, 623-642.

Tobar, R., Gao, Y., Mas, J. F., & Cambrón, V. (2023). Land use and land cover classification through machine learning algorithms : literature review. Journal of Remote Sensing, 62, 1-19.ón.

Miralles, C., & Cardona, M. (2020). The gender perspective in initial teacher education: a descriptive study of student perceptions. Educación XXI, 23(2), 231-257.

Barcia, E., Soledad, J., Barcia, A., & Mendoza, J. (2023). Formative evaluation in pedagogical practice in Higher Education : Sitematic review. Ciencia Latina Revista Científica Multidisciplinar, 7(3), 1-13.




How to Cite

Ramos Rivadeneira DX, Toledo JAJ. Machine learning as a teaching strategy education: A review. EAI Endorsed Scal Inf Syst [Internet]. 2024 May 14 [cited 2024 Jul. 19];11(6). Available from: