Node-Alive Index Driven Redundancy Elimination for Energy-Efficient Wireless Sensor Networks
DOI:
https://doi.org/10.4108/eetsis.7397Keywords:
Node-Alive Index, Data Aggregation, Energy Efficiency, Redundant Data, Temporal Correlation, Wireless Sensor NetworkAbstract
Wireless Sensor Networks (WSNs) generate correlated and redundant data. This redundancy increases energy consumption during transmission and aggregation, which reduces the network lifespan. Eliminating data redundancy using appropriate data aggregation mechanisms in the dynamic environment is challenging. To address these issues, we designed the Data Aggregation with Redundancy Removal (DARR) protocol and implemented it in two phases. In Phase I, the DARR protocol identifies redundant nodes by calculating the spatial distance between the adjacent nodes. Over time, nodes may run out of energy and stop working after continuously sensing, aggregating, and transmitting the data. The dead nodes can obstruct data forwarding to intermediate nodes, so it is important to check periodically whether the nodes are alive or dead. The periodic time check identifies the status of each node, allowing the protocol to focus only on active nodes. It sets redundant nodes to sleep, which conserves network energy. In Phase II, the protocol reduces data redundancy at the source nodes using temporal correlation between data measurements. We enhanced the DARR protocol by incorporating a High Compression Temporal (HCT) mechanism, which further reduces data redundancy. Simulations show that the DARR protocol reduces data transmissions by 24% and lowers network energy consumption by up to 31% by eliminating redundant data at both the network and node levels.
References
[1] Bomnale, A., Malgaonkar, S., “Power optimization in wireless sensor networks”, In: 2018 International Conference on Communication Information and Computing Technology (ICCICT), pp. 1-6 (2018), IEEE. doi:10.1109/ICCICT.2018.8325870
[2] More, A., Raisinghani, V., “A node failure and battery-aware coverage protocol for wireless sensor networks”, Computers & Electrical Engineering, 64, 200-219 (2017). https://doi.org/10.1016/j.compeleceng.2016.12.024
[3] Jain, K., Kumar, A., “Energy-efficient data-aggregation technique for correlated spatial and temporal data in cluster-based sensor networks”, International Journal of Business Data Communications and Networking (IJBDCN) 16(2), 53-68(2020). doi:10.4018/IJBDCN.2020070103
[4] Li, J., Cheng, S., Cai, Z., Yu, J., Wang, C., Li, Y., “Approximate holistic aggregation in wireless sensor networks”, ACM Transactions on Sensor Networks (TOSN) 13(2), 1-24 (2017). https://doi.org/10.1145/302748
[5] Cheng, S., Cai, Z., Li, J., Gao, H., “Extracting kernel dataset from big sensory data in wireless sensor networks”, IEEE Transactions on Knowledge and Data Engineering 29(4), 813-827 (2016) https://doi.org/10.1109/TKDE.2016.2645212.
[6] Yan, M., Ji, S., Han, M., Li, Y., Cai, Z., “Data aggregation scheduling in wireless networks with cognitive radio capability”, In: 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 513-521 (2014), IEEE. https://doi.org/10.1109/GLOCOM.2016.7841716
[7] Villas, L.A., Boukerche, A., Guidoni, D.L., de Oliveira, H.A.B.F., de Araujo, R.B., Loureiro, A.A.F., “An energy-aware spatio-temporal correlation mechanism to perform efficient data collection in wireless sensor networks”, Computer Communications 36(9), 1054-1066 (2013). https://doi.org/10.1016/j.comcom.2012.04.007
[8] Singh, C., Basha, S., Bhushan, A., Venkatesan, M., Chaturvedi, A., Shrivastava, A., “A secure iot based wireless sensor network data aggregation and dissemination system”, Cybernetics and Systems, 1-13 (2023). https://doi.org/10.1080/01969722.2023.2176653
[9] Gulati, K., Kumar Boddu, R.S., Kapila, D., Bangare, S.L., Chandnani, N., Saravanan, G., “A review paper on wireless sensor network techniques in internet of things (iot) ”, Materials Today, Proceedings 51, 161-165 (2022). https://doi.org/10.1016/j.matpr.2021.05.067
[10] Sekar, K., Suganya Devi, K., Srinivasan, P., “Energy efficient data aggregation using spatio-temporal compressive sensing for wsns”, Wireless Personal Communications 117(2), 1279-1295 (2021). doi:10.1007/s11277-020-07922-x
[11] Maivizhi, R., Yogesh, P., “Spatial correlation based data redundancy elimination for data aggregation in wireless sensor networks”, In: 2020 International Conference on Innovative Trends in Information Technology (ICITIIT), pp. 1-5 (2020), IEEE. doi:10.1109/ICITIIT49094.2020.9071535
[12] Dash, L., Pattanayak, B.K., Mishra, S.K., Sahoo, K.S., Jhanjhi, N.Z., Baz, M., Masud, M., “A data aggregation approach exploiting spatial and temporal correlation among sensor data in wireless sensor networks”, Electronics 11(7), 989 (2022). doi:10.3390/electronics11070989
[13] Kaur, M., Munjal, A., “Data aggregation algorithms for wireless sensor network, A review”, Ad hoc networks, vol. 100, 102083 (2020). https://doi.org/10.1016/j.adhoc.2020.102083
[14] Sharmin, S., Ahmedy, I., Md Noor, R., “An energy-efficient data aggregation clustering algorithm for wireless sensor networks using hybrid pso”, Energies 16(5), 2487 (2023). doi:10.3390/en16052487
[15] Daanoune, I., Baghdad, A., Ballouk, A., “Improved leach protocol for increasing the lifetime of wsns”, Int J. Electr. Comput. Eng. IJECE 11(4), 3106-3113 (2021). doi:10.11591/ijece.v11i4.pp3106-3113
[16] Begum, B.A., Nandury, S.V., “Data aggregation protocols for wsn and iot applications - a comprehensive survey”, Journal of King Saud University - Computer and Information Sciences 35(2), 651-681 (2023). https://doi.org/10.1016/j.jksuci.2023.01.008
[17] Fitzgerald, E., Pioro, M., Tomaszwski, A., “Energy-optimal data aggregation and dissemination for the internet of things”, IEEE Internet of Things Journal 5(2), 955-969 (2018). doi:10.1109/JIOT.2018.2803792
[18] Behera, T.M., Samal, U.C., Mohapatra, S.K., “Energy-efficient modified leach protocol for iot application”, IET Wireless Sensor Systems 8(5), 223-228 (2018). https://doi.org/10.1049/iet-wss.2017.0099
[19] Rahman, H., Ahmed, N., Hussain, M.I., “A qos-aware hybrid data aggregation scheme for internet of things”, Annals of Telecommunications 73, 475-486 (2018). doi:10.1007/s12243-018-0646-3
[20] Zhang, L., Zhou, Y., Wang, J., “An energy saving strategy of wsns based on data sensing and similarity”, Wireless Personal Communications 131(3), 2241- 2268 (2023). https://doi.org/10.1007/s11277-023-10540-y
[21] Ismael, W.M., Gao, M., Yemeni, Z., “Esrra-iot, “Edge-based spatial redundancy reduction approach for internet of things”, Internet of Things 14, 100388 (2021). https://doi.org/10.1016/j.iot.2021.100388
[22] Yemeni, Z., Wang, H., Ismael, W.M., Wang, Y., Chen, Z., “Reliable spatial and temporal data redundancy reduction approach for wsn”, Computer Networks 185, 107701 (2021). https://doi.org/10.1016/j.comnet.2020.107701
[23] Yadav, S., Yadav, R.S., “Redundancy elimination during data aggregation in wireless sensor networks for iot systems”, In: Recent Trends in Communication, Computing, and Electronics, Select Proceedings of IC3E 2018, pp. 195-205 (2019), Springer. doi:10.1007/978-981-13-2685-1_20
[24] Liazid, H., Lehsaini, M., Liazid, A., “Data transmission reduction using prediction and aggregation techniques in iot-based wireless sensor networks”, Journal of Network and Computer Applications 211, 103556 (2023). https://doi.org/10.1016/j.jnca.2022.103556
[25] Jain, K., Bhola, A., “Data aggregation design goals for monitoring data in wireless sensor networks”, Journal of Network Security Computer Networks, vol. 4, pp. 1-9 (2018). doi:10.5281/zenodo.1464554
[26] Bagaa, M., Younis, M., Djenouri, D., Derhab, A., Badache, N., “Distributed low-latency data aggregation scheduling in wireless sensor networks”, ACM Transactions on Sensor Networks (TOSN) Vol 11(3), 1-36 (2015). doi:10.1145/2744198
[27] Chen, K., Gao, H., Cai, Z., Chen, Q., Li, J., “Distributed energy-adaptive aggregation scheduling with coverage guarantee for battery-free wireless sensor networks”, In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1018-1026 (2019), IEEE. https://doi.org/10.1109/INFOCOM.2019.8737492
[28] Nguyen, T.-D., Le, D.-T., Vo, V.-V., Kim, M., Choo, H., “Fast sensory data aggregation in iot networks: Collision-resistant dynamic approach”, IEEE Internet of Things Journal 8(2), 766-777 (2020). doi:10.1109/JIOT.2020.3007329.
[29] Chen, Q., Cai, Z., Cheng, L., Gao, H., “Structure-free general data aggregation scheduling for multihop battery-free wireless networks”, IEEE Transactions on Mobile Computing 21(09), 3342-3359 (2022). doi:10.1109/TMC.2021.3053557
[30] Bagaa, M., Challal, Y., Ksentini, A., Derhab, A., Badache, N., “Data aggregation scheduling algorithms in wireless sensor networks: Solutions and challenges”, IEEE Communications Surveys & Tutorials 16(3), 1339-1368 (2014). doi:10.1109/SURV.2014.031914.00029
[31] Yun, W.-K., Yoo, S.-J., “Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks”, IEEE Access, vol. 9, 10737-10750 (2021). doi:10.1109/ACCESS.2021.3051360
[32] Agarkhed, J., Kadrolli, V., Patil, S.R., “Efficient bandwidth-aware routing protocol in wireless sensor networks (EBARP)”, International Journal of Information Technology, Vol.14, 1967-1979 (2022). https://doi.org/10.1007/s41870-021-00828-2
[33] Haseeb, K., Islam, N., Saba, T., Rehman, A., Mehmood, Z., “Lsdar: A light-weight structure based data aggregation routing protocol with secure internet of things integrated next-generation sensor networks”, Sustainable Cities and Society 54, 101995 (2020). doi:10.1109/ACCESS.2021.3051360
[34] Bomnale, A., More, A., “Node utilization index-based data routing and aggregation protocol for energy-efficient wireless sensor networks”, The Journal of Supercomputing 79, 1-33 (2023). doi:10.1007/s11227-023-05800-4
[35] Ghori, M.R., Wan, T.-C., Sodhy, G.C., Rizwan, A., “Optimization of the aodv-based packet forwarding mechanism for ble mesh networks”, Electronics 10(18), 2274 (2021). https://doi.org/10.3390/electronics10182274
[36] The network simulator ns-2. http://www.isi.edu/nsnam/ns/ (last used: 2019-2024)
[37] Priyadarshi, R., “Exploring machine learning solutions for overcoming challenges in IoT-based wireless sensor network routing: a comprehensive review”, Wireless Network 30, 2647–2673 (2024). https://doi.org/10.1007/s11276-024-03697-2
[38] Nayak, Padmalaya, et al., "Routing in wireless sensor networks using machine learning techniques: Challenges and opportunities", Measurement 178 (2021). https://doi.org/10.1016/j.measurement.2021.108974
[39] Ravinder Singh, Sudha Subramani, et.al., “Antisocial Behaviour Identification from Twitter Feeds Using Traditional Machine Learning Algorithms and Deep Learning”, EAI Endorsed Transactions on Scalable Information Systems, SIS 10(4) (2023). doi:10.4108/eetsis.v10i3.3184
[40] Lakshmi, M. S., K. J. Kashyap, S. M. Fazal Khan, N. J. S. Vratha Reddy, and V. B. Kumar Achari. “Whale Optimization Based Deep Residual Learning Network for Early Rice Disease Prediction in IoT”, EAI Endorsed Transactions on Scalable Information Systems, vol. 10, no. 6, (2023). doi:10.4108/eetsis.4056.
[41] Chen, Xiaoyu & Zhang, Junkai & Ren, Pengshan & Hua, Xian & Ni, Yanfeng. (2023), “Database System Based on 3Dmax Big Data Mining Technology”, ICST Transactions on Scalable Information Systems, (2023) doi:10.4108/eetsis.3727.
[42] C. -Q. Huang et al., "XKT: Toward Explainable Knowledge Tracing Model With Cognitive Learning Theories for Questions of Multiple Knowledge Concepts," in IEEE Transactions on Knowledge and Data Engineering, vol. 36, no. 11, pp. 7308-7325, (2024). doi:10.1109/TKDE.2024.3418098.
[43] Vijayakumar, K., P. Thirumaraiselvan, B. Sivakumar, and P. Seenuvasan. "Revolutionizing Data Transmission-A Comprehensive Review of Deep Learning-Based Routing Mechanism for 5G Wireless Sensor Networks." In 2024 10th International Conference on Communication and Signal Processing (ICCSP), pp. 565-570. IEEE, (2024). doi: 10.1109/ICCSP60870.2024.10544339.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Archana Bomnale, Avinash More
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.