Robust GAN-Based CNN Model as Generative AI Application for Deepfake Detection

Authors

  • Preeti Sharma University of Petroleum and Energy Studies
  • Manoj Kumar University of Wollongong in Dubai
  • Hitesh Kumar Sharma University of Petroleum and Energy Studies

DOI:

https://doi.org/10.4108/eetiot.5637

Keywords:

Deep Learning, Digital Forensics, Generative Adversarial Networks, GAN, Generative AI, CNN model, Deepfake

Abstract

One of the most well-known generative AI models is the Generative Adversarial Network (GAN), which is frequently employed for data generation or augmentation. In this paper a reliable GAN-based CNN deepfake detection method utilizing GAN as an augmentation element is implemented. It aims to give the CNN model a big collection of images so that it can train better with the intrinsic qualities of the images. The major objective of this research is to show how GAN innovations have enhanced and increased the use of generative AI principles, particularly in fake image classification called Deepfakes that poses concerns about misrepresentation and individual privacy.  For identifying these fake photos more synthetic images are created using the GAN model that closely resemble the training data.  It has been observed that GAN-augmented datasets can improve the robustness and generality of CNN-based detection models, which correctly identify between real and false images by 96.35%.

Downloads

Download data is not yet available.

Author Biography

  • Manoj Kumar, University of Wollongong in Dubai

    Research Cluster Head, Network and Cyber Security, UOWD, Dubai

    MEU Research Unit, Middle East University, Amman, 11831, Jordan

    Research Fellow, INTI International University, Malaysia

References

I. Goodfellow et al. (2020), “Generative adversarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144, doi: 10.1145/3422622.

Islam. A. (2023). A Hist. Gener. AI From gan to GPT-4. MarkTechPost. https//www.marktechpost.com/2023/03/21/a-history-of-generative-ai-from-gan-to-gpt-4/.

Park. S.-W., Ko, J.-S., Huh, J.-H., Kim, J.-C. (2021). Rev. Gener. Advers. Networks Focus. Comput. Vis. its Appl. Electron. 10(10), 1216. https//doi.org/10.3390/electronics10101216.

Jin, L., Tan, F., Jiang, S. (2020). Gener. Advers. Netw. Technol. Appl. Comput. vision. Comput. Intell. Neurosci. 2020, 1–17. https//doi.org/10.1155/2020/1459107.

Lala, S., Shady, M., Belyaeva, A., Liu, M. (2018). Eval. Mode Collapse Gener. Advers. Networks. IEEE.

Lucic, M., Kurach, K., Michalski, M., Bousquet, O., Gelly, S. (2018). Are GANs Creat. Equal. A Large-Scale Study. https//proceedings.neurips.cc/paper/2018/file/e46de7e1bcaaced9a54f1e9d0d2f800d-Paper.pdf.

Groenendijk, R., Karaoglu, S., Gevers, T., Mensink, T. (2020). benefit Advers. Train. monocular depth Estim. Comput. Vis. Image Understanding, 190, 102848. https//doi.org/10.1016/j.cviu.2019.102848.

Verbeek, J. (2019). Deep Gener. Model. INRIA.

Kokate, P., Joshi, A. D., Tamizharasan, P. S. (2020). An Empir. Comp. Gener. Advers. Netw. Meas. Lect. Notes Electr. Eng. 1383–1396. https//doi.org/10.1007/978-981-15-5341-7_105.

Hughes, R. T., Zhu, L., Bednarz, T. (2021). Gener. Advers. networks–enabled human–artificial Intell. Collab. Appl. Creat. Des. Ind. A Syst. Rev. Curr. approaches Trends. Front. Artif.

Ruthotto, L., Haber, E. (2021). An Introd. to Deep Gener. Model. GAMM-Mitteilungen, 44(2). https//doi.org/10.1002/gamm.202100008.

Liu, F., Wang, H., Zhang, J., Fu, Z., Zhou, A., Qi, J., Li, Z. (2022). Evogan An Evol. Comput. Assist. gan. Neurocomputing, 469, 81–90. https//doi.org/10.1016/j.neucom.2021.10.060.

Chen, J., Song, W. (2022). Gan-vae Elev. Gener. ineffective image through Var. autoencoder. 2022 5th Int. Conf. Pattern Recognit. Artif. Intell. (PRAI). https//doi.org/10.1109/prai55851.2022.9904067.

Peters, H., Celis, N. C. (2022). An Empir. Comp. Gener. Capab. GAN vs VAE. KTH R. Inst. Technol.

Su (苏嘉红), J., Yang (杨伟鹏), W. (2023). Unlocking power chatgpt A Framew. Appl. Gener. AI Educ. ECNU Rev. Educ. 209653112311684. https//doi.org/10.1177/20965311231168423.

https://www.kaggle.com/datasets/iamsouravbanerjee/indian-actor-images-dataset.

Prasad Koyyada, S., & Singh, T. P. (2023). An explainable artificial intelligence model for identifying local indicators and detecting lung disease from chest X-ray images. Healthcare Analytics, 100206.

F. Marra, D. Gragnaniello, D. Cozzolino, L. Verdoliva, “Detection GAN-generated fake images over Soc. networks,” Proc. IEEE Conf. Multimed. Inf. Process. Retrieval, 2018, pp. 384–389.

Afchar, D., Nozick, V., Yamagishi, J., Echizen, I. (2018). MesoNet A Compact facial video Forg. Detect. network. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Work. 2122-2131. https//openaccess.thecvf.com/co.

Zhou, W., Huang, Y., Wang, W., Wang, W., Tan, T. (2020). Learn. to Detect fake face videos wild. Proc. IEEE Conf. Comput. Vis. Pattern Recognition, 5205-5214. https//openaccess.thecvf.com/content_CVPR_2020/papers.

Downloads

Published

04-04-2024

How to Cite

[1]
“Robust GAN-Based CNN Model as Generative AI Application for Deepfake Detection”, EAI Endorsed Trans IoT, vol. 10, Apr. 2024, doi: 10.4108/eetiot.5637.

Most read articles by the same author(s)