Robust GAN-Based CNN Model as Generative AI Application for Deepfake Detection

Authors

DOI:

https://doi.org/10.4108/eetiot.5637

Keywords:

Deep Learning, Digital Forensics, Generative Adversarial Networks, GAN, Generative AI, CNN model, Deepfake

Abstract

One of the most well-known generative AI models is the Generative Adversarial Network (GAN), which is frequently employed for data generation or augmentation. In this paper a reliable GAN-based CNN deepfake detection method utilizing GAN as an augmentation element is implemented. It aims to give the CNN model a big collection of images so that it can train better with the intrinsic qualities of the images. The major objective of this research is to show how GAN innovations have enhanced and increased the use of generative AI principles, particularly in fake image classification called Deepfakes that poses concerns about misrepresentation and individual privacy.  For identifying these fake photos more synthetic images are created using the GAN model that closely resemble the training data.  It has been observed that GAN-augmented datasets can improve the robustness and generality of CNN-based detection models, which correctly identify between real and false images by 96.35%.

Downloads

Download data is not yet available.
<br data-mce-bogus="1"> <br data-mce-bogus="1">

Author Biography

Manoj Kumar, University of Wollongong in Dubai

Research Cluster Head, Network and Cyber Security, UOWD, Dubai

MEU Research Unit, Middle East University, Amman, 11831, Jordan

Research Fellow, INTI International University, Malaysia

References

I. Goodfellow et al. (2020), “Generative adversarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144, doi: 10.1145/3422622. DOI: https://doi.org/10.1145/3422622

Islam. A. (2023). A Hist. Gener. AI From gan to GPT-4. MarkTechPost. https//www.marktechpost.com/2023/03/21/a-history-of-generative-ai-from-gan-to-gpt-4/.

Park. S.-W., Ko, J.-S., Huh, J.-H., Kim, J.-C. (2021). Rev. Gener. Advers. Networks Focus. Comput. Vis. its Appl. Electron. 10(10), 1216. https//doi.org/10.3390/electronics10101216. DOI: https://doi.org/10.3390/electronics10101216

Jin, L., Tan, F., Jiang, S. (2020). Gener. Advers. Netw. Technol. Appl. Comput. vision. Comput. Intell. Neurosci. 2020, 1–17. https//doi.org/10.1155/2020/1459107. DOI: https://doi.org/10.1155/2020/6748430

Lala, S., Shady, M., Belyaeva, A., Liu, M. (2018). Eval. Mode Collapse Gener. Advers. Networks. IEEE.

Lucic, M., Kurach, K., Michalski, M., Bousquet, O., Gelly, S. (2018). Are GANs Creat. Equal. A Large-Scale Study. https//proceedings.neurips.cc/paper/2018/file/e46de7e1bcaaced9a54f1e9d0d2f800d-Paper.pdf.

Groenendijk, R., Karaoglu, S., Gevers, T., Mensink, T. (2020). benefit Advers. Train. monocular depth Estim. Comput. Vis. Image Understanding, 190, 102848. https//doi.org/10.1016/j.cviu.2019.102848. DOI: https://doi.org/10.1016/j.cviu.2019.102848

Verbeek, J. (2019). Deep Gener. Model. INRIA.

Kokate, P., Joshi, A. D., Tamizharasan, P. S. (2020). An Empir. Comp. Gener. Advers. Netw. Meas. Lect. Notes Electr. Eng. 1383–1396. https//doi.org/10.1007/978-981-15-5341-7_105. DOI: https://doi.org/10.1007/978-981-15-5341-7_105

Hughes, R. T., Zhu, L., Bednarz, T. (2021). Gener. Advers. networks–enabled human–artificial Intell. Collab. Appl. Creat. Des. Ind. A Syst. Rev. Curr. approaches Trends. Front. Artif.

Ruthotto, L., Haber, E. (2021). An Introd. to Deep Gener. Model. GAMM-Mitteilungen, 44(2). https//doi.org/10.1002/gamm.202100008. DOI: https://doi.org/10.1002/gamm.202100008

Liu, F., Wang, H., Zhang, J., Fu, Z., Zhou, A., Qi, J., Li, Z. (2022). Evogan An Evol. Comput. Assist. gan. Neurocomputing, 469, 81–90. https//doi.org/10.1016/j.neucom.2021.10.060. DOI: https://doi.org/10.1016/j.neucom.2021.10.060

Chen, J., Song, W. (2022). Gan-vae Elev. Gener. ineffective image through Var. autoencoder. 2022 5th Int. Conf. Pattern Recognit. Artif. Intell. (PRAI). https//doi.org/10.1109/prai55851.2022.9904067. DOI: https://doi.org/10.1109/PRAI55851.2022.9904067

Peters, H., Celis, N. C. (2022). An Empir. Comp. Gener. Capab. GAN vs VAE. KTH R. Inst. Technol.

Su (苏嘉红), J., Yang (杨伟鹏), W. (2023). Unlocking power chatgpt A Framew. Appl. Gener. AI Educ. ECNU Rev. Educ. 209653112311684. https//doi.org/10.1177/20965311231168423.

https://www.kaggle.com/datasets/iamsouravbanerjee/indian-actor-images-dataset.

Prasad Koyyada, S., & Singh, T. P. (2023). An explainable artificial intelligence model for identifying local indicators and detecting lung disease from chest X-ray images. Healthcare Analytics, 100206. DOI: https://doi.org/10.1016/j.health.2023.100206

F. Marra, D. Gragnaniello, D. Cozzolino, L. Verdoliva, “Detection GAN-generated fake images over Soc. networks,” Proc. IEEE Conf. Multimed. Inf. Process. Retrieval, 2018, pp. 384–389. DOI: https://doi.org/10.1109/MIPR.2018.00084

Afchar, D., Nozick, V., Yamagishi, J., Echizen, I. (2018). MesoNet A Compact facial video Forg. Detect. network. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Work. 2122-2131. https//openaccess.thecvf.com/co. DOI: https://doi.org/10.1109/WIFS.2018.8630761

Zhou, W., Huang, Y., Wang, W., Wang, W., Tan, T. (2020). Learn. to Detect fake face videos wild. Proc. IEEE Conf. Comput. Vis. Pattern Recognition, 5205-5214. https//openaccess.thecvf.com/content_CVPR_2020/papers.

Downloads

Published

04-04-2024

How to Cite

[1]
P. Sharma, M. Kumar, and H. K. Sharma, “Robust GAN-Based CNN Model as Generative AI Application for Deepfake Detection”, EAI Endorsed Trans IoT, vol. 10, Apr. 2024.