Micro robot as the feature of robotic in healthcare approach from design to application: the State of art and challenges
DOI:
https://doi.org/10.4108/airo.5602Keywords:
Micro robot, Service robot, Design, sensors, NavigationAbstract
Micro robots, miniature robotic devices typically ranging from micrometers to a few millimeters in size, hold immense potential in various fields, particularly healthcare. Their diminutive stature enables access to intricate anatomical regions previously unreachable, facilitating targeted drug delivery, localized treatment, and precise monitoring. These robots offer numerous advantages, including enhanced maneuverability, reduced invasiveness, and minimized tissue damage. By navigating through complex biological environments, micro robots can deliver therapies with unprecedented precision, improving treatment efficacy and patient outcomes. Additionally, their small size allows for minimally invasive procedures, reducing recovery times and enhancing patient comfort. Overall, micro robots represent a groundbreaking technological advancement with the potential to revolutionize healthcare delivery and significantly benefit human well-being.
Their small size enables access to intricate anatomical regions for targeted drug delivery, localized treatment, and precise monitoring. Despite challenges like size constraints and navigation complexities, innovative solutions and interdisciplinary collaboration are driving their advancement in improving healthcare outcomes.
Downloads
References
Moshayedi, A. J., Fard, S. S., Liao, L., & Eftekhari, S. A. (2019). Design and development of pipe inspection robot meant for resizable pipe lines. Int. J. Robot. Control, 2(1), 25.
Sun, W., Li, J., Qiu, J., & Sun, Y. (2024). Biomimetic nano/microfabrication techniques in multi-bioinspired superhydrophobic wood: new insight on theory, design and applications. Surfaces and Interfaces, 104217.
Li, P., Wang, Z., Ye, C., Fang, D., Zhang, J., & Liang, C. (2024). Development and verification of a micro magnetically guided helical robot with active locomotion and steering capabilities for guidewires. Sensors and Actuators A: Physical, 115123.
Moshayedi, A. J., & Gharpure, D. C. (2012, May). Development of position monitoring system for studying performance of wind tracking algorithms. In ROBOTIK 2012; 7th German Conference on Robotics (pp. 1-4). VDE.
Chen, Y., Chen, D., Liang, S., Dai, Y., Bai, X., Song, B., ... & Feng, L. (2022). Recent advances in fieldcontrolled micro–nano manipulations and micro–nano robots. Advanced Intelligent Systems, 4(3), 2100116.
Esfahani, O. T., & Moshayedi, A. J. (2014). Accuracy of the Positioning Systems for the Tracking of Alzheimer’s Patients-A Review. International Journal of Applied Electronics in Physics & Robotics, 2(2), 10-16.
Kasina, H., Bahubalendruni, M. R., & Botcha, R. (2017). Robots in medicine: past, present and future. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 7(4), 44-64.
Zeng, J. (2022, January). The development trend of robots. In 2021 International Conference on Social Development and Media Communication (SDMC 2021) (pp. 1261-1265). Atlantis Press.
Tai, Y. C. (2012). Introduction to MEMS. Microsystems and Nanotechnology, 187-206.
Nikalje, A. P. (2015). Nanotechnology and its applications in medicine. Med chem, 5(2), 081-089.
Moshayedi, A. J., & Gharpure, D. C. (2017, May). Evaluation of bio inspired Mokhtar: Odor localization system. In 2017 18th international carpathian control conference (ICCC) (pp. 527-532). IEEE.
Zhang, D., Gorochowski, T. E., Marucci, L., Lee, H. T., Gil, B., Li, B., ... & Yeatman, E. (2023). Advanced medical micro-robotics for early diagnosis and therapeutic interventions. Frontiers in Robotics and AI, 9, 1086043.
Chen, Y., Chen, D., Liang, S., Dai, Y., Bai, X., Song, B., ... & Feng, L. (2022). Recent advances in fieldcontrolled micro–nano manipulations and micro–nano robots. Advanced Intelligent Systems, 4(3), 2100116.
Maheswari, B. U., Imambi, S. S., Hasan, D., Meenakshi, S., Pratheep, V. G., & Boopathi, S. (2023). Internet of things and machine learning-integrated smart robotics.
In Global Perspectives on Robotics and Autonomous Systems: Development and Applications (pp. 240-258). IGI Global.
Mehmood, U., Agyekum, E. B., Kamel, S., Shahinzadeh, H., & Moshayedi, A. J. (2022). Exploring the roles of renewable energy, education spending, and co2 emissions towards health spending in South Asian countries. Sustainability, 14(6), 3549.
Cai, Z., Fu, Q., Zhang, S., Fan, C., Zhang, X., Guo, J., & Guo, S. (2021). Performance evaluation of a magnetically driven microrobot for targeted drug delivery. Micromachines, 12(10), 1210.
van Mulken, T. J., Qiu, S. S., Jonis, Y., Profar, J. J., Blokhuis, T. J., Geurts, J., ... & van der Hulst, R. R. (2023). First-in-Human Integrated Use of a Dedicated Microsurgical Robot with a 4K 3D Exoscope: The Future of Microsurgery. Life, 13(3), 692.
Babeer, A., Oh, M. J., Ren, Z., Liu, Y., Marques, F., Poly, A., ... & Koo, H. (2022). Microrobotics for precision biofilm diagnostics and treatment. Journal of Dental Research, 101(9), 1009-1014.
Ojha, S., Bhusan Singh, R., Shukla, A., Chadha, H., & Mishra, S. (2024). Micro and Nano Robotics-assisted Targeted Drug Delivery, Surgery and Radiotherapy for Cancer Treatment. Current Cancer Therapy Reviews, 20(1), 18-25.
Doutel, E., Galindo-Rosales, F. J., & Campo-Deaño, L. (2021). Hemodynamics challenges for the navigation of medical microbots for the treatment of CVDs. Materials, 14(23), 7402.
Tian, M., Ma, Z., & Yang, G. Z. (2024). Micro/nanosystems for controllable drug delivery to the brain. The Innovation, 5(1).
Zhang, Y., Zhang, Y., Han, Y., & Gong, X. (2022). Micro/nanorobots for medical diagnosis and disease treatment. Micromachines, 13(5), 648.
Patole, V., Tupe, A., Tanpure, S., Swami, R., Vitkare, V., & Jadhav, P. (2024). Nanorobotic artificial blood components and its therapeutic applications: A minireview. Irish Journal of Medical Science (1971-), 1-10.
Ozaydin, M. S., Doganturk, L., Ulucan-Karnak, F., Akdogan, O., & Erkoc, P. (2022). Contemporary tools for the cure against pernicious microorganisms: micro- /nanorobots. Prosthesis, 4(3), 424-443.
SHEVKAR, N. (2024). NANOROBOTS: AN EMERGING TOOL IN MEDICAL SCIENCE (Doctoral dissertation, Trinity College).
Xing, G., Yu, X., Zhang, Y., Sheng, S., Jin, L., Zhu, D., ... & Lv, F. (2024). Macrophages-Based Biohybrid Microrobots for Breast Cancer Photothermal Immunotherapy by Inducing Pyroptosis. Small, 20(7), 2305526.
Safdar, M., Ullah, M., Wahab, A., Hamayun, S., Rehman, M. U., Khan, M. A., ... & Naeem, M. (2024). Genomic insights into heart health: Exploring the genetic basis of cardiovascular disease. Current Problems in Cardiology, 49(1), 102182.
Silvera-Tawil, D. (2024). Robotics in Healthcare: A Survey. SN Computer Science, 5(1), 189.
Chen, B., Sun, H., Zhang, J., Xu, J., Song, Z., Zhan, G., ... & Feng, L. (2024). Cell-Based Micro/Nano-Robots for Biomedical Applications: A Review. Small, 20(1), 2304607.
Rassweiler, J. J., Autorino, R., Klein, J., Mottrie, A., Goezen, A. S., Stolzenburg, J. U., ... & Liatsikos, E. (2017). Future of robotic surgery in urology. BJU international, 120(6), 822-841.
Smith, R. (2024). Explosion of Robotics in Healthcare. In The Rise of the Intelligent Health System (pp. 87-111). Productivity Press.
Cai, Z., Fu, Q., Zhang, S., Fan, C., Zhang, X., Guo, J., & Guo, S. (2021). Performance evaluation of a magnetically driven microrobot for targeted drug delivery. Micromachines, 12(10), 1210.
Barua, R. (2024). Innovations in Minimally Invasive Surgery: The Rise of Smart Flexible Surgical Robots. In Emerging Technologies for Health Literacy and Medical Practice (pp. 110-131). IGI Global.
Zhang, D., Gorochowski, T. E., Marucci, L., Lee, H. T., Gil, B., Li, B., ... & Yeatman, E. (2023). Advanced medical micro-robotics for early diagnosis and therapeutic interventions. Frontiers in Robotics and AI, 9, 1086043.
Wang, Y., Shen, J., Handschuh-Wang, S., Qiu, M., Du, S., & Wang, B. (2022). Microrobots for targeted delivery and therapy in digestive system. ACS nano, 17(1), 27-50.
Wang, T., Li, H., Pu, T., & Yang, L. (2023). Microsurgery robots: applications, design, and development. Sensors, 23(20), 8503.
Huang, J., Yu, X., Li, L., Wang, W., Zhang, H., Zhang, Y., ... & Ma, J. (2024). Design of Light-Driven Biocompatible and Biodegradable Microrobots Containing Mg-Based Metallic Glass Nanowires. ACS nano, 18(3), 2006-2016.
Shen, H., Cai, S., Wang, Z., Ge, Z., & Yang, W. (2023). Magnetically driven microrobots: Recent progress and future development. Materials & Design, 227, 111735.
Wang, Z., Klingner, A., Magdanz, V., Misra, S., & Khalil, I. S. (2024). Soft Bio-Microrobots: Toward Biomedical Applications. Advanced Intelligent Systems, 6(2), 2300093.
Chen, B., Sun, H., Zhang, J., Xu, J., Song, Z., Zhan, G., ... & Feng, L. (2024). Cell-Based Micro/Nano-Robots for Biomedical Applications: A Review. Small, 20(1), 2304607.
Madkour, L. H., & Madkour, L. H. (2019). Introduction to nanotechnology (NT) and nanomaterials (NMs). Nanoelectronic materials: fundamentals and applications, 1-47.
Dodampegama, S., Mudugamuwa, A., Konara, M., Perera, N., De Silva, D., Roshan, U., ... & Tamura, H. (2022). A review on the motion of magnetically actuated bio-inspired microrobots. Applied Sciences, 12(22), 11542.
Horibe, K., Walker, K., & Risi, S. (2021). Regenerating soft robots through neural cellular automata. In Genetic Programming: 24th European Conference, EuroGP 2021,
Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings 24 (pp. 36-50). Springer International Publishing.
Cheraghi, A. R., Shahzad, S., & Graffi, K. (2022). Past, present, and future of swarm robotics. In Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys) Volume 3 (pp. 190-233). Springer International Publishing.
Wang, Y., Mei, D., Liu, X., Ji, A., Niu, S., & Li, B. (2023). Bio-Inspired Smart Machines: Structure, Mechanisms and Applications. Machines, 11(3), 405.
Luo, M., Feng, Y., Wang, T., & Guan, J. (2018). Micro- /nanorobots at work in active drug delivery. Advanced Functional Materials, 28(25), 1706100.
Lee, W., Jung, E., Kim, N., Lee, D., Kim, S., Lee, Y., & Jang, G. (2024). Robotically Adjustable Magnetic Navigation System for Medical Magnetic Milli/Microrobots. IEEE/ASME Transactions on Mechatronics.
Peng, X., Urso, M., Kolackova, M., Huska, D., & Pumera, M. (2024). Biohybrid Magnetically Driven Microrobots for Sustainable Removal of Micro/Nanoplastics from the Aquatic Environment. Advanced Functional Materials, 34(3), 2307477.
Wang, Q., Xiang, N., Lang, J., Wang, B., Jin, D., & Zhang, L. (2024). Reconfigurable Liquid-Bodied Miniature Machines: Magnetic Control and Microrobotic Applications. Advanced Intelligent Systems, 6(2), 2300108.
Gao, Y., Guo, Y., Yang, Y., Tang, Y., Wang, B., Yan, Q., ... & Li, D. (2024). Magnetically Manipulated Optoelectronic Hybrid Microrobots for Optically Targeted Non-Genetic Neuromodulation. Advanced Materials, 36(8), 2305632.
Nagappan, S., & Ha, C. S. (2021). Superhydrophobic Polymer/Nanoparticle Hybrids. Materials with Extreme Wetting Properties: Methods and Emerging Industrial Applications, 91-116.
Chikere, N., & Ozkan-Aydin, Y. (2024). Harnessing Flagella Dynamics for Enhanced Robot Locomotion at Low Reynolds Number. IEEE Robotics and Automation Letters.
Xiao, Y., Zhang, J., Fang, B., Zhao, X., & Hao, N. (2022). Acoustics-actuated microrobots. Micromachines, 13(3), 481.
Wang, Q., Yang, S., & Zhang, L. (2024). Untethered micro/nanorobots for remote sensing: Toward intelligent platform. Nano-Micro Letters, 16(1), 40.
Zhang, F., Li, Z., Chen, C., Luan, H., Fang, R. H., Zhang, L., & Wang, J. (2024). Biohybrid Microalgae Robots: Design, Fabrication, Materials, and Applications. Advanced Materials, 36(3), 2303714.
Wang, Q., Xiang, N., Lang, J., Wang, B., Jin, D., & Zhang, L. (2024). Reconfigurable Liquid-Bodied Miniature Machines: Magnetic Control and Microrobotic Applications. Advanced Intelligent Systems, 6(2), 2300108.
Huang, J., Yu, X., Li, L., Wang, W., Zhang, H., Zhang, Y.,... & Ma, J. (2024). Design of Light-Driven Biocompatible and Biodegradable Microrobots Containing Mg-Based Metallic Glass Nanowires. ACS nano, 18(3), 2006-2016.
Yu, S., Liu, C., Sui, M., Wei, H., Cheng, H., Chen, Y., ... & Li, T. (2024). Magnetic-acoustic actuated spinous microrobot for enhanced degradation of organic pollutants. Ultrasonics Sonochemistry, 102, 106714.
Sharma, S., Sudhakara, P., Omran, A. A. B., Singh, J., & Ilyas, R. A. (2021). Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers, 13(17), 2898.
Adam, G., Boudaoud, M., Reynaud, V., Agnus, J., Cappelleri, D. J., & Clévy, C. (2024). An Overview of Microrobotic Systems for Microforce Sensing. Annual Review of Control, Robotics, and Autonomous Systems, 7.
Lee, W., Jung, E., Kim, N., Lee, D., Kim, S., Lee, Y., & Jang, G. (2024). Robotically Adjustable Magnetic Navigation System for Medical Magnetic Milli/Microrobots. IEEE/ASME Transactions on Mechatronics.
Zarei, M., Moshayedi, A. J., Zhong, Y., Khan, A. S., Kolahdooz, A., & Andani, M. E. (2023, January). Indoor UAV object detection algorithms on three processors: implementation test and comparison. In 2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE) (pp. 812-819). IEEE.
Azimi, M., Kolahdooz, A., & Eftekhari, S. A. (2017). An optimization on the DIN1. 2080 alloy in the electrical discharge machining process using ANN and GA. Journal of Modern Processes in Manufacturing and Production, 6(1), 33-47.
Latifi Rostami, S.A., Ghoddosian, A., Kolahdooz, A. and Zhang, J., 2022. Topology optimization of continuum structures under geometric uncertainty using a new extended finite element method. Engineering Optimization, 54(10), pp.1692-1708.
Chautems, C., Zeydan, B., Charreyron, S., Chatzipirpiridis, G., Pané, S., & Nelson, B. J. (2017). Magnetically powered microrobots: a medical revolution underway?. European Journal of Cardio-Thoracic Surgery, 51(3), 405- 407.
Xu, G., Khan, A. S., Moshayedi, A. J., Zhang, X., & Shuxin, Y. (2022). The object detection, perspective and obstacles in robotic: a review. EAI Endorsed Transactions on AI and Robotics, 1(1).
Fu, Q., Zhang, S., Guo, S., & Guo, J. (2018). Performance evaluation of a magnetically actuated capsule microrobotic system for medical applications. Micromachines, 9(12), 641.
Moshayedi, A. J., Sohail Khan, A., Hu, J., Nawaz, A., & Zhu, J. (2023). E-nose-driven advancements in ammonia gas detection: a comprehensive review from traditional to cutting-edge systems in indoor to outdoor agriculture. Sustainability, 15(15), 11601.
Geng, K., Ata, J. M., Chen, J., Hu, J., & Zhang, H. (2023, March). ENOSE Performance in Transient Time and Steady State Area of Gas Sensor Response for Ammonia Gas: Comparison and Study. In Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning (pp. 247-252).
Moshayedi, A. J., Khan, A. S., Shuxin, Y., Kuan, G., Jiandong, H., Soleimani, M., & Razi, A. (2023). ENose design and structures from statistical analysis to application in robotic: a compressive review. EAI Endorsed Transactions on AI and Robotics, 2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ata Jahangir Moshayedi, Amir Sohail Khan, Mehdi Davari, Tahmineh Mokhtari, Mehran Emadi Andani
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.