Empowering financial futures: Large language models in the modern financial landscape
DOI:
https://doi.org/10.4108/airo.6117Keywords:
Large language models, Financial sector, Customer support, Fraud detectionAbstract
In this paper, we delve into the transformative influence of Large Language Models (LLMs) in the financial sector. Through meticulous exploration, we uncover the multifaceted applications of LLMs, ranging from elevating customer support and fortifying fraud detection to reshaping market analysis and prediction. LLMs, with their unparalleled ability to process extensive textual data, bring forth innovative solutions and insights. However, we also address critical challenges such as user trust and ethical considerations, emphasizing the need for responsible integration. Collaborative efforts between industry stakeholders and researchers are essential prerequisites for making a pivotal stride towards a future where LLMs redefine financial practices, with efficiency, accuracy, and ethical precision shaping the industry’s evolution.
Downloads
References
[1] Li, Z., Li, S., Francis, A. and Luo, X. (2022) A novel calibration system for robot arm via an open dataset and a learning perspective. IEEE Transactions on Circuits and Systems II: Express Briefs 69(12): 5169–5173.
[2] Li, Z., Li, S. and Luo, X. (2021) An overview of calibration technology of industrial robots. IEEE/CAA Journal of Automatica Sinica 8(1): 23–36.
[3] Li, Z., Li, S., Bamasag, O.O., Alhothali, A. and Luo, X.(2022) Diversified regularization enhanced training for effective manipulator calibration. IEEE Transactions on Neural Networks and Learning Systems.
[4] Jin, L., Liao, B., Liu, M., Xiao, L., Guo, D. and Yan, X. (2017) Different-level simultaneous minimization scheme for fault tolerance of redundant manipulator aided with discrete-time recurrent neural network. Frontiers in neurorobotics 11: 50.
[5] Zhang, Z., Zheng, L., Weng, J., Mao, Y., Lu, W. and Xiao, L. (2018) A new varying-parameter recurrent neural-network for online solution of time-varying sylvester equation. IEEE transactions on cybernetics 48(11): 3135–3148.
[6] Xiao, L., Liao, B., Li, S. and Chen, K. (2018) Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations. Neural Networks 98: 102–113.
[7] Liao, B., Hua, C., Xu, Q., Cao, X. and Li, S. (2024) Inter-robot management via neighboring robot sensing and measurement using a zeroing neural dynamics approach. Expert Systems with Applications 244: 122938.
[8] Min, B., Ross, H., Sulem, E., Veyseh, A.P.B., Nguyen, T. H., Sainz, O., Agirre, E. et al. (2023) Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey. ACM Computing Surveys 56(2): 30:1–30:40. doi:10.1145/3605943.
[9] Haque, M.A. (2022) A brief analysis of “chatgpt”–a revolutionary tool designed by openai. EAI Endorsed Transactions on AI and Robotics 1: e15–e15.
[10] Tank, U., Arirangan, S., Paduri, A.R. and Darapaneni, N. (2023) A study towards building content aware models in nlp using genetic algorithms. EAI Endorsed Transactions on AI and Robotics 2(1).
[11] Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K. and Chen, L. (2023) Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research 25(3): 277–304. doi:10.1080/15228053.2023.2233814.
[12] Jeong, C. (2023) A study on the implementation of generative ai services using an enterprise data-based llm application architecture. arXiv preprint arXiv:2309.01105.
[13] Huang, A.H., Wang, H. and Yang, Y. (2023) FinBERT: A Large Language Model for Extracting Information from Financial Text*. Contemporary Accounting Research 40(2): 806–841. doi:10.1111/1911-3846.12832.
[14] Dowling, M. and Lucey, B. (2023) ChatGPT for (Finance) research: The Bananarama Conjecture. Finance Research Letters 53: 103662. doi:10.1016/j.frl.2023.103662.
[15] A.Shaji George, A.S.Hovan George and A.S.Gabrio Martin (2023) A Review of ChatGPT AI’s Impact on Several Business Sectors. Partners Universal International Innovation Journal 1(1). doi:10.5281/ZENODO.7644359.
[16] Koc, E., Hatipoglu, S., Kivrak, O., Celik, C. and Koc, K. (2023) Houston, we have a problem!: The use of ChatGPT in responding to customer complaints. Technology in Society 74: 102333. doi:10.1016/j.techsoc.2023.102333.
[17] Paul, J., Ueno, A. and Dennis, C. (2023) ChatGPT and consumers: Benefits, Pitfalls and Future Research Agenda. International Journal of Consumer Studies 47(4): 1213–1225. doi:10.1111/ijcs.12928.
[18] Ali, A., Abd Razak, S., Othman, S.H., Eisa, T.A.E., Al-Dhaqm, A., Nasser, M., Elhassan, T. et al. (2022) Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review. Applied Sciences 12(19): 9637. doi:10.3390/app12199637.
[19] Yi, Z., Cao, X., Chen, Z. and Li, S. (2023) Artificial intelligence in accounting and finance: Challenges and opportunities. IEEE Access 11: 129100–129123.
[20] Al-Furaiji, R.H. and Abdulkader, H. (2024) A compar-ison of the performance of six machine learning algo-rithms for fake news. EAI Endorsed Transactions on AI and Robotics 3.
[21] Elhafsi, A., Sinha, R., Agia, C., Schmerling, E., Nesnas, I.A.D. and Pavone, M. (2023) Semantic anomaly detection with large language models. Autonomous Robots doi:10.1007/s10514-023-10132-6.
[22] Liu, Y., Tao, S., Meng, W., Wang, J., Ma, W., Zhao, Y., Chen, Y. et al. (2023), LogPrompt: Prompt Engineering Towards Zero-Shot and Interpretable Log Analysis. doi:10.48550/arXiv.2308.07610. 2308.07610.
[23] Qi, J., Huang, S., Luan, Z., Fung, C., Yang, H. and Qian, D. (2023), LogGPT: Exploring ChatGPT for Log-Based Anomaly Detection. doi:10.48550/arXiv.2309.01189. 2309.01189.
[24] Nakano, M. and Yamaoka, T. (2023), Enhancing Sentiment Analysis based Investment by Large Language Models in Japanese Stock Market. doi:10.2139/ssrn.4511658.
[25] Wang, S., Yuan, H., Zhou, L., Ni, L.M., Shum, H.Y. and Guo, J. (2023) Alpha-gpt: Human-ai interactive alpha mining for quantitative investment. arXiv preprint arXiv:2308.00016.
[26] Cao, X., Peng, C., Zheng, Y., Li, S., Ha, T.T., Shutyaev, V., Katsikis, V. et al. (2023) Neural networks for portfolio analysis in high-frequency trading. IEEE Transactions on Neural Networks and Learning Systems.
[27] Xie, Q., Han, W., Zhang, X., Lai, Y., Peng, M., Lopez-Lira, A. and Huang, J. (2023), PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark for Finance. doi:10.48550/arXiv.2306.05443. 2306.05443.
[28] Li, X., Chan, S., Zhu, X., Pei, Y., Ma, Z., Liu, X. and Shah, S. (2023), Are ChatGPT and GPT-4 General-Purpose Solvers for Financial Text Analytics? A Study on Several Typical Tasks. doi:10.48550/arXiv.2305.05862. 2305.05862.
[29] Lopez-Lira, A. and Tang, Y. (2023), Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models. doi:10.48550/arXiv.2304.07619. 2304.07619.
[30] Yu, X., Chen, Z., Ling, Y., Dong, S., Liu, Z. and Lu, Y. (2023), Temporal Data Meets LLM – Explainable Financial Time Series Forecasting, https://arxiv.org/abs/2306.11025v1.
[31] Niszczota, P. and Abbas, S. (2023) GPT has become financially literate: Insights from financial literacy tests of GPT and a preliminary test of how people use it as a source of advice. Finance Research Letters 58: 104333. doi:10.1016/j.frl.2023.104333.
[32] Lo, A.W. and Ross, J. (2024) Can chatgpt plan your retirement?: Generative ai and financial advice. Generative AI and Financial Advice (February 11, 2024).
[33] Maree, M., Al-Qasem, R. and Tantour, B. (2023) Transforming legal text interactions: Leveraging natural language processing and large language models for legal support in Palestinian cooperatives. International Journal of Information Technology doi:10.1007/s41870- 23- 01584-1.
[34] Zheng, Z., Chen, K.Y., Cao, X.Y., Lu, X.Z. and Lin, J.R. (2023) Llm-funcmapper: Function identification for interpreting complex clauses in building codes via llm. arXiv preprint arXiv:2308.08728.
[35] Sun, Z. (2023), A Short Survey of Viewing Large Language Models in Legal Aspect. doi:10.48550/arXiv.2303.09136. 2303.09136.
[36] Izzidien, A., Sargeant, H. and Steffek, F. (2024) Llm vs. lawyers: Identifying a subset of summary judgments in a large uk case law dataset. arXiv preprint arXiv:2403.04791.
[37] Chen, Z., Ma, J., Zhang, X., Hao, N., Yan, A., Nourbakhsh, A., Yang, X. et al. (2024) A survey on large language models for critical societal domains: Finance, healthcare, and law.
[38] R.R.P. (2023) Ai-infused algorithmic trading: Genetic algorithms and machine learning in high-frequency trading. International Journal For Multidisciplinary Research 5(5): 5752.
[39] [pdf] global insights and the impact of generative ai-chatgpt on multidisciplinary: A systematic review and bibliometric analysis | semantic scholar, https://www.semanticscholar.org/paper/Global-insights-and-the-impact-of-generative-on-a-Khan-Khan/219add0ef5c6e6a7073e17df3b210e9c6d594f44.
[40] Liesenfeld, A., Lopez, A. and Dingemanse, M. (2023) Opening up ChatGPT: Tracking openness, transparency, and accountability in instruction-tuned text generators. In Proceedings of the 5th International Conference on Conversational User Interfaces, CUI ’23 (New York, NY, USA: Association for Computing Machinery): 1–6. doi:10.1145/3571884.3604316.
[41] Bajracharya, A., Khakurel, U., Harvey, B. and Rawat, D. B. (2023) Recent Advances in Algorithmic Biases and Fairness in Financial Services: A Survey. K. [ed.] Proceedings of the Future Technologies Conference (FTC) 2022, Volume 1, Lecture Notes in Networks and Systems (Cham: Springer International Publishing): 809–822. doi:10.1007/978-3-031-18461-1_53.
[42] Chen, Z., Zhang, J.M., Sarro, F. and Harman, M. (2023) A Comprehensive Empirical Study of Bias Mitigation Methods for Machine Learning Classifiers. ACM Trans-actions on Software Engineering and Methodology 32(4): 106:1–106:30. doi:10.1145/3583561.
[43] Kizza, J.M. (2023) Artificial Intelligence: Ethical and Social Problems of Large Language Models and the Future of Technology. In Kizza, J.M. [ed.] Ethical and Secure Computing: A Concise Module, Undergraduate Topics in Computer Science (Cham: Springer Inter-national Publishing), 275–285. doi:10.1007/978-3-031-31906-8_13.
[44] Guo, D., Chen, H., Wu, R. and Wang, Y. (2023) AIGC challenges and opportunities related to public safety: A case study of ChatGPT. Journal of Safety Science and Resilience 4(4): 329–339. doi:10.1016/j.jnlssr.2023.08.001.
[45] Chen, C. and Shu, K. (2023), Can LLM-Generated Misin-formation Be Detected? doi:10.48550/arXiv.2309.13788. 2309.13788.
[46] Wu, J. and Hooi, B. (2023), Fake News in Sheep’s Clothing: Robust Fake News Detection Against LLM-Empowered Style Attacks. doi:10.48550/arXiv.2310.10830. 2310.10830.
[47] South, T., Mahari, R. and Pentland, A. (2023), Transparency by Design for Large Language Models.
[48] Wang, Y. (2023), Deciphering the Enigma: A Deep Dive into Understanding and Interpreting LLM Outputs. doi:10.36227/techrxiv.24085833.v1.
[49] Newman, J. (2024) Promoting interdisciplinary research collaboration: A systematic review, a critical literature review, and a pathway forward. Social Epistemology 38(2): 135–151.
[50] Manchul, B.V. (2021) The impact and dynamics of interdisciplinary research in contemporary science.
[51] Wei, H., Horns, P., Sears, S.F., Huang, K., Smith, C.M. and Wei, T.L. (2022) A systematic meta-review of sys-tematic reviews about interprofessional collaboration: facilitators, barriers, and outcomes. Journal of Interpro-fessional Care 36(5): 735–749.
[52] Freeth, R. and Caniglia, G. (2020) Learning to collab-orate while collaborating: advancing interdisciplinary sustainability research. Sustainability science 15(1): 247–261.
[53] Moirano, R., Sánchez, M.A. and Štěpánek, L. (2020) Creative interdisciplinary collaboration: A systematic literature review. Thinking Skills and Creativity 35: 100626.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Xinwei Cao, Shuai Li, Vasilios Katsikis, Ameer Tamoor Khan, Hailing He, Zhengping Liu, Lieping Zhang, Chen Peng
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.