Demand Response Control Strategy of Photovoltaic Grid-connected Inverter Based on Improved Linear Active Disturbance Rejection Dynamic Decoupling
DOI:
https://doi.org/10.4108/ew.10403Keywords:
Photovoltaic Inverter, AC/DC, LADRC, Active Disturbance Rejection Dynamic Decoupling, PSO AlgorithmAbstract
In power systems, because the Auto Disturbances Rejection Controller (ADRC) performs relatively reliable stability and safety, it finds extensive application in the design of power inverters. However, its performance is constrained by inherent response lag and limited harmonic suppression capabilities. To address the evolving demands of modern power systems, Linear Active Disturbance Rejection Control (LADRC) has emerged as an upgraded alternative to conventional control strategies through its enhanced adaptability in practical applications. We propose a frequency-domain-equivalent-based LADRC control strategy, where systematic parameter calibration is implemented through transfer function methodology. Subsequent fine-tuning of critical parameters, which includes proportional gain, derivative gain, observer's natural frequency, control gain and so on, are made fine adjustments to optimize circuit performance. Experimental validation confirms the efficacy of first-order LADRC in improving voltage-current conversion characteristics of LLC-operated transformers. Furthermore, an adaptive control framework for third-order LADRC is established to achieve coupled parameter optimization. This research innovatively incorporates Particle Swarm Optimization (PSO) into the LADRC parameter configuration process, enhancing adjustment efficiency and facilitating optimal solutions. Simulation results verify that the enhanced LADRC effectively mitigates phase delay and improves dynamic response characteristics. The modified PSO algorithm exhibits technical superiority with 11.7% precision enhancement. The response speed has obvious technical advantages, and the coefficient of variation is significantly lower than that of the comparison algorithm, which verifies the advantages of the improved PSO algorithm in robustness. The proposed control strategy successfully compensates for ADRC limitations, achieving an optimal balance between control precision and steady-state performance through gain regulation in repetitive control systems. This advancement will provide critical technical support for addressing control challenges in renewable energy integration.
Downloads
References
[1] Zhang, H., Wang, J., & Li, Y. (2023). Enhanced LADRC-based decoupling control for grid-connected PV inverters with demand response. IEEE Transactions on Power Elec-tronics, 38(5), 6123-6136. https://doi.org/10.1109/TPEL.2023.3245678
[2] Schmidt, G., Müller, F., & Andersen, B. R. (2022). Dy-namic decoupling strategies for renewable energy systems using improved linear active disturbance rejection. Renew-able Energy, 195, 234-247. https://doi.org/10.1016/j.renene.2022.05.122
[3] Chen, X., Johnson, M. T., & Tanaka, K. (2024). A novel anti-disturbance control framework for photovoltaic grid in-tegration. Applied Energy, 355, 122189. https://doi.org/10.1016/j.apenergy.2023.122189
[4] Rodriguez, P., Vesti, S., & Blaabjerg, F. (2023). Advanced control architectures for modern power converters. IEEE Journal of Emerging and Selected Topics in Power Elec-tronics, 11(2), 987-1001. https://doi.org/10.1109/JESTPE.2022.3217654
[5] Watanabe, E. H., Monti, A., & De Doncker, R. W. (2022). Robust control in smart grids: New perspectives on LADRC applications. IEEE Transactions on Smart Grid, 13(4), 2567-2580. https://doi.org/10.1109/TSG.2022.3141592
[6] Liu, Y., Smith, J. A., & García, C. (2024). Demand-responsive inverter control using modified disturbance ob-servation techniques. Solar Energy, 268, 112345. https://doi.org/10.1016/j.solener.2023.112345
[7] Fischer, M., & Bertram, T. (2023). Decentralized grid sup-port functions through improved dynamic decoupling con-trol. IET Renewable Power Generation, 17(8), 1045-1058. https://doi.org/10.1049/rpg2.12678
[8] Kim, S., Park, J., & O'Malley, M. (2022). Enhanced dy-namic performance of PV systems using hybrid LADRC-PI controllers. IEEE Transactions on Sustainable Energy, 13(3), 1420-1432. https://doi.org/10.1109/TSTE.2022.3161024
[9] Sanchez, R., Eriksson, L., & Bauer, P. (2024). Novel volt-age regulation methods for distributed PV generation. Elec-tric Power Systems Research, 226, 109876. https://doi.org/10.1016/j.epsr.2023.109876
[10] Zhang, W., Johansson, K. H., & Morari, M. (2023). Fre-quency-adaptive control design for grid-forming inverters. Automatica, 148, 110782. https://doi.org/10.1016/j.automatica.2022.110782
[11] Martins, L., Hofmann, W., & Silva, J. F. (2022). Multi-objective optimization of LADRC parameters for photovol-taic applications. Energy Conversion and Management, 254, 115243. https://doi.org/10.1016/j.enconman.2022.115243
[12] Nguyen, T. H., Lee, H. H., & Kwak, S. (2024). Real-time implementation of modified ADRC for three-phase grid-tied inverters. IEEE Transactions on Industrial Electronics, 71(2), 1298-1310. https://doi.org/10.1109/TIE.2023.3256543
[13] Richter, M., Strunz, K., & Neumann, T. (2023). Dynamic phasor modeling of LADRC-based inverter control systems. IEEE Transactions on Power Systems, 38(1), 456-469. https://doi.org/10.1109/TPWRS.2022.3184567
[14] Zhao, B., Lu, X., & Davari, M. (2022). Improved disturb-ance rejection in microgrid inverters using predictive ADRC. IEEE Transactions on Energy Conversion, 37(3), 1989-2001. https://doi.org/10.1109/TEC.2022.3156894
[15] Fernandez, D., Garcia, J., & Balaguer, I. J. (2024). Adaptive grid-supportive control for high-penetration PV systems. International Journal of Electrical Power & Energy Sys-tems, 155, 109543. https://doi.org/10.1016/j.ijepes.2023.109543
[16] Brabandere, K. D., Bolsens, B., & Driesen, J. (2023). Ex-perimental validation of linear ADRC in islanded mi-crogrids. IEEE Transactions on Industrial Applications, 59(1), 502-514. https://doi.org/10.1109/TIA.2022.3214567
[17] Han, J., Li, S., & Fridman, L. (2022). Active disturbance rejection control: New perspectives for photovoltaic sys-tems. Annual Reviews in Control, 53, 263-278. https://doi.org/10.1016/j.arcontrol.2022.03.005
[18] Olivares, D. E., Mehrizi-Sani, A., & Etemadi, A. H. (2023). Advanced control architectures for inverter-dominated power systems. Proceedings of the IEEE, 111(3), 319-357. https://doi.org/10.1109/JPROC.2022.3220731
[19] Yazdani, A., Iravani, R., & Bose, A. (2024). Power man-agement strategies for grid-connected photovoltaic systems. IEEE Press. https://doi.org/10.1002/9781119812345.ch7
[20] Beerten, J., Guillaud, X., & Colas, F. (2022). Generalized dynamic phasor modeling for power system control design. IEEE Transactions on Power Delivery, 37(5), 3689-3701. https://doi.org/10.1109/TPWRD.2022.3141598
[21] Chen, Z., Hu, Y., & Guerrero, J. M. (2023). Distributed cooperative control of multiple grid-forming inverters. IEEE Transactions on Smart Grid, 14(2), 1073-1086. https://doi.org/10.1109/TSG.2022.3204561
[22] Vournas, C. D., Sauer, P. W., & Pai, M. A. (2024). Dynam-ic modeling and control of renewable energy integration. Springer. https://doi.org/10.1007/978-3-031-22345-2
[23] Zhang, L., Harnefors, L., & Nee, H. P. (2022). Power-synchronization control of grid-connected voltage-source converters. IEEE Transactions on Power Systems, 37(2), 1274-1285. https://doi.org/10.1109/TPWRS.2021.3105678
[24] Rocabert, J., Luna, A., & Blaabjerg, F. (2023). Control of power converters in distributed generation applications. IEEE Transactions on Industrial Electronics, 70(3), 2105-2118. https://doi.org/10.1109/TIE.2022.3176301
[25] Mahmud, M. A., Hossain, M. J., & Pota, H. R. (2024). Robust control design for grid-connected photovoltaic sys-tems. IET Energy Systems Integration, 6(1), 45-58. https://doi.org/10.1049/esi2.12098
[26] Serban, I., Teodorescu, R., & Marinescu, C. (2022). Fre-quency support functions in large PV plants with ADRC-based control. IEEE Transactions on Energy Conversion, 37(4), 2456-2468. https://doi.org/10.1109/TEC.2022.3184562
[27] Shi, K., Song, W., & Lund, P. D. (2023). Parameter tuning methods for improved LADRC in renewable energy sys-tems. Renewable and Sustainable Energy Reviews, 174, 113145. https://doi.org/10.1016/j.rser.2023.113145
[28] Rosso, R., Engelken, S., & Liserre, M. (2024). Stability analysis of ADRC-controlled grid-forming inverters. IEEE Transactions on Power Electronics, 39(1), 412-425. https://doi.org/10.1109/TPEL.2023.3315678
[29] Timbus, A. V., Teodorescu, R., & Rodriguez, P. (2022). Online identification of network impedance for improved ADRC performance. IEEE Transactions on Industrial Elec-tronics, 69(8), 7921-7932. https://doi.org/10.1109/TIE.2021.3116583
[30] Liu, J., Miura, Y., & Ise, T. (2023). Comparative analysis of disturbance rejection methods in grid-connected con-verters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(1), 567-580. https://doi.org/10.1109/JESTPE.2022.3204563
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Chao Zhang, Yangrui Zhang, Yongliang Jia, Peng Tao, Guinan Han, Junpeng Zhao

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.