VRE Integrating in PIAT grid with aFRR using PSS, MPPT, and PSO-based Techniques: A Case Study Kabertene
DOI:
https://doi.org/10.4108/ew.3378Keywords:
Integration VRE, ZIP dynamic models loads, Automatic Frequency Restoration Reserve (aFRR), Power System Stabilizers (PSS), Maximum Power Point Tracking (MPPT), Particle Swarm Optimization (PSO), PIAT gridAbstract
The Fluctuations in demand and weather conditions have a significant impact on the frequency and the voltage of Algeria's isolated PIAT power grid. To maintain stability and reliable power supply, it is crucial to keep these quantities close to their expected levels. An automatic (FRR) is employed to regulate real-time frequency deviations caused by integrating variable renewable energy (VRE), specifically wind and solar power in the Kabertene region. In order to mitigate wind power fluctuations, a power system stabilizer is implemented, which helps dampen oscillations. The use of Maximum Power Point Tracking (MPPT) techniques optimizes the extraction of power from solar panels under varying conditions. For efficient scheduling and dispatch of VRE generation, particle swarm optimization (PSO)-based algorithms are used. These algorithms ensure optimal utilization of renewable energy sources by considering their intermittent nature. This study proves the effectiveness of these techniques in enhancing grid stability, reducing frequency deviations, and improving VRE integration. Valuable insights are provided on their practical implementation, playing a crucial role in transitioning to a cleaner and more sustainable energy system.
Downloads
References
R. Yan, Q. Xing, and Y. Xu, “Multi agent safe graph reinforcement learning for PV inverter s based real-time de centralized volt/VAR control in zoned distribution networks,” IEEE Transactions on Smart Grid, pp. 1–1, 2023. doi:10.1109/tsg.2023.3277087 DOI: https://doi.org/10.1109/TSG.2023.3277087
Y. Rao et al., “A frequency control strategy for multimicrogrids with V2G based on the improved robust model predictive control,” Energy, vol. 222, p. 119963, 2021. doi:10.1016/j.energy.2021.119963 DOI: https://doi.org/10.1016/j.energy.2021.119963
P. Fan et al., “A Load Frequency coordinated control strategy for multimicrogrids with V2G based on improved Ma-DDPG,” International Journal of Electrical Power & Energy Systems, vol. 146, p. 108765, 2023. doi:10.1016/j.ijepes.2022.108765 DOI: https://doi.org/10.1016/j.ijepes.2022.108765
A. M. Ewais et al., “Adaptive frequency control in smart microgrid using controlled loads supported by real-time implementation,” PLOS ONE, vol. 18, no. 4, 2023. doi:10.1371/journal.pone.0283561 DOI: https://doi.org/10.1371/journal.pone.0283561
A. Tadjeddine, A. Chaker and all, “Optimal Intelligent Energy Management to integrate a photovoltaic park into electricity grid using a real-time objective function—application to the naâma park,” ICREEC 2019, pp. 77–84, 2020. https://doi.org/10.1007/978-981-15-5444-5_10. DOI: https://doi.org/10.1007/978-981-15-5444-5_10
Harrouz, I. COLAK, and K. KAYISILI, “Control strategy of PMSG generator in small wind turbine system,” Algerian Journal of Renewable Energy and Sustainable Development, vol. 4, no. 01, pp. 69–83, 2022. doi:10.46657/ajresd.2022.4.1.7 DOI: https://doi.org/10.46657/ajresd.2022.4.1.7
A. Tadjeddine, R. I. Bendjillali and all, “Advanced dynamic stability system developed for nonlinear load,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 4, p. 265, 2023. https://doi.org/10.11591/ijpeds.v11.i4.pp265-271.
M. Leinakse, G. Andreesen, P. Tani, and J. Kilter, “Estimation of exponential and zip load model of aggregated load with distributed generation,” 2021 IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2021. doi:10.1109/rtucon53541.2021.9711702 DOI: https://doi.org/10.1109/RTUCON53541.2021.9711702
M. F. Dynge, P. Crespo del Granado, N. Hashemipour, and M. Korpås, “Impact of local electricity markets and peer-to-peer trading on low-voltage grid operations,” Applied Energy, vol. 301, p. 117404, 2021. doi:10.1016/j.apenergy.2021.117404 DOI: https://doi.org/10.1016/j.apenergy.2021.117404
M. Nour, J. P. Chaves-Ávila, M. Troncia, A. Ali, and Á. Sánchez-Miralles, “Impacts of community energy trading on low voltage distribution networks,” IEEE Access, pp. 1–1, 2023. doi:10.1109/access.2023.3278090 DOI: https://doi.org/10.1109/ACCESS.2023.3278090
E. J. Smith, D. A. Robinson, and A. P. Agalgaonkar, “A secondary strategy for unbalance consensus in an Islanded Voltage Source converter-based microgrid using cooperative gain control,” Electric Power Systems Research, vol. 210, p. 108097, 2022. doi:10.1016/j.epsr.2022.108097 DOI: https://doi.org/10.1016/j.epsr.2022.108097
P. Fan et al., “A frequency–pressure cooperative control strategy of multi-microgrid with an electric–gas system based on MADDPG,” Sustainability, vol. 14, no. 14, p. 8886, 2022. doi:10.3390/su14148886 DOI: https://doi.org/10.3390/su14148886
Y. Wen et al., “An optimal scheduling strategy of a microgrid with V2G based on Deep Q-Learning,” Sustainability, vol. 14, no. 16, p. 10351, 2022. doi:10.3390/su141610351 DOI: https://doi.org/10.3390/su141610351
H. Abubakr et al., “Adaptive LFC incorporating modified virtual rotor to regulate frequency and tie-line power flow in multi-area microgrids,” IEEE Access, vol. 10, pp. 33248–33268, 2022. doi:10.1109/access.2022.3161505 DOI: https://doi.org/10.1109/ACCESS.2022.3161505
J. Young, W. Weaver, D. G. Wilson, and R. D. Robinett III, “The optimal control of type-4 wind turbines connected to an electric microgrid,” 20th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants (WIW 2021), 2021. doi:10.1049/icp.2021.2625 DOI: https://doi.org/10.1049/icp.2021.2625
T. M. Le et al., “Optimal Power Flow Solutions to power systems with wind energy using a highly effective meta-heuristic algorithm,” International Journal of Renewable Energy Development, vol. 12, no. 3, pp. 467–477, 2023. doi:10.14710/ijred.2023.51375 DOI: https://doi.org/10.14710/ijred.2023.51375
T. Binkowski, “Synchronization of the photovoltaic converter with on-board high frequency grid,” 2021 Selected Issues of Electrical Engineering and Electronics (WZEE), 2021. doi:10.1109/wzee54157.2021.9577012 DOI: https://doi.org/10.1109/WZEE54157.2021.9577012
Li et al., “Modeling Integrated Power and transportation systems: Impacts of power-to-gas on the deep decarbonization,” IEEE Transactions on Industry Applications, vol. 58, no. 2, pp. 2677–2693, 2022. doi:10.1109/tia.2021.3116916 DOI: https://doi.org/10.1109/TIA.2021.3116916
F. Aboshady, O. Ceylan, A. F. Zobaa, A. Ozdemir, G. Taylor, and I. Pisica, “Sequentially coordinated and cooperative volt/VAR control of PV inverters in Distribution Networks,” Electronics, vol. 12, no. 8, p. 1765, 2023. DOI: https://doi.org/10.3390/electronics12081765
P. Li, J. Hou, Y. Yang, and X. Bai, “Small signal stability constrained optimal power flow model based on trajectory optimization,” Energy Reports, vol. 9, pp. 489–499, 2023. DOI: https://doi.org/10.1016/j.egyr.2023.04.188
A. Lasheen, H. F. Sindi, M. Nour, M. Shaaban, A. Osman, and H. H. Zeineldin, “Impact of secondary control design on the microgrid domain of stability considering reactive power sharing,” IEEE Access, pp. 1–9, 2023. DOI: https://doi.org/10.1109/ACCESS.2023.3272112
H. Hichem, A. A. Tadjeddine, A. Iliace, and M . S. Bendelhoum, “A new robust Sida-PBC approach to control a DFIG,” Bulletin of Electrical Engineering and Informatics, vol. 12, no. 3, pp. 1310–1317, 2023. DOI: https://doi.org/10.11591/eei.v12i3.2155
O. E. Turgut and M. S. Turgut, “Local search enhanced Aquila optimization algorithm ameliorated with an ensemble of wavelet mutation strategies for complex optimization problems,” Mathematics and Computers in Simulation, vol. 206, pp. 302–374, 2023. doi:10.1016/j.matcom.2022.11.020 DOI: https://doi.org/10.1016/j.matcom.2022.11.020
A. Kumar, V. M. Mishra, and R. Ranjan, “Control strategy for design and performance evaluation of Hybrid Renewable Energy System using neural network controller,” Applications of AI and IOT in Renewable Energy, pp. 211–223, 2022. doi:10.1016/b978-0-323-91699-8.00012-7 DOI: https://doi.org/10.1016/B978-0-323-91699-8.00012-7
X. Irudayaraj et al., “An adaptive Zhang Neural Network Controller for frequency control of Renewable Energy Integrated System,” 2022 IEEE 10th Power India International Conference (PIICON), 2022. doi:10.1109/piicon56320.2022.10045183 DOI: https://doi.org/10.1109/PIICON56320.2022.10045183
V. Sharifi, A. Abdollahi, and M. Rashidinejad, “Flexibility-based generation maintenance scheduling in presence of uncertain wind power plants forecasted by deep learning considering demand response programs portfolio,” International Journal of Electrical Power & Energy Systems, vol. 141, p. 108225, 2022. doi:10.1016/j.ijepes.2022.108225 DOI: https://doi.org/10.1016/j.ijepes.2022.108225
Q. Asadi, A. Ashoornezhad, H. Falaghi, and M. Ramezani, “Optimal repair crew and mobile power source scheduling for load restoration in Distribution Networks,” 2023 International Conference on Protection and Automation of Power Systems (IPAPS), 2023. doi:10.1109/ipaps58344.2023.10123318 DOI: https://doi.org/10.1109/IPAPS58344.2023.10123318
Ranko Goić, Damir Jakus, and Eugen Mudnić, “Calculation of annual active energy losses in a distribution network with a connected wind power plant,” Journal of Energy - Energija, vol. 56, no. 6, pp. 676–699, 2022. doi:10.37798/2007566372 DOI: https://doi.org/10.37798/2007566372
A. Alvarez Canabal, A. G. Loukianov, J. M. Cañedo Castañeda, and V. A. Utkin, “Adaptive power system stabilizer with sliding mode for Electric Power Systems,” SSRN Electronic Journal, 2022. doi:10.2139/ssrn.4111002 DOI: https://doi.org/10.2139/ssrn.4111002
Q. Wu, Y. He, F. Jiang, L. Shi, and Y. Li, “Optimization of Energy Storage Assisted peak regulation parameters based on PSS/e,” Energy Reports, vol. 9, pp. 504–512, 2023. doi:10.1016/j.egyr.2023.03.059 DOI: https://doi.org/10.1016/j.egyr.2023.03.059
Review for “Optimal design of power system stabilizer for multimachine power system using farmland fertility algorithm,” 2020. doi:10.1002/2050-7038.12657/v2/review2 DOI: https://doi.org/10.1002/2050-7038.12657/v2/review2
R. Kumari and A. Kumar, “Power system stabilizer design for Ideal AVR using local measurements,” International Journal of Electrical Power & Energy Systems, vol. 150, p. 109061, 2023. doi:10.1016/j.ijepes.2023.109061 DOI: https://doi.org/10.1016/j.ijepes.2023.109061
V. Snášel, R. M. Rizk-Allah, D. Izci, and S. Ekinci, “Weighted mean of vectors optimization algorithm and its application in designing the power system stabilizer,” Applied Soft Computing, vol. 136, p. 110085, 2023. doi:10.1016/j.asoc.2023.110085 DOI: https://doi.org/10.1016/j.asoc.2023.110085
Y. Yang et al., “Parameter coordination optimization of power system stabilizer based on similarity index of Power System State-BP Neural Network,” Energy Reports, vol. 9, pp. 427–437, 2023. doi:10.1016/j.egyr.2023.04.158 DOI: https://doi.org/10.1016/j.egyr.2023.04.158
K. Tokumitsu, H. Amano, K. Kawabe, and T. Nanahara, “Analysis and improvement of cross-regional cooperation for Automatic Frequency Restoration Reserves,” Electric Power Systems Research, vol. 188, p. 106574, 2020. doi:10.1016/j.epsr.2020.106574 DOI: https://doi.org/10.1016/j.epsr.2020.106574
P. Maucher, S. Remppis, D. Schlipf, and H. Lens, “Control Aspects of the interzonal exchange of Automatic Frequency Restoration Reserves,” IFAC-PapersOnLine, vol. 55, no. 9, pp. 30–35, 2022. doi:10.1016/j.ifacol.2022.07.006 DOI: https://doi.org/10.1016/j.ifacol.2022.07.006
Pavic, T. Capuder, and H. Pandzic, “Analysis of AFRR and MFRR balancing capacity & Energy demands and bid curves,” 2022 IEEE 7th International Energy Conference (ENERGYCON), 2022. doi:10.1109/energycon53164.2022.9830433 DOI: https://doi.org/10.1109/ENERGYCON53164.2022.9830433
S. Kim, “A novel preventive frequency stability constrained OPF considering wind power fluctuation,” 2022 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia), 2022. doi:10.1109/isgtasia54193.2022.10003619 DOI: https://doi.org/10.1109/ISGTAsia54193.2022.10003619
S. Neelamkavil Pappachan, “Development of optimal placement and sizing of facts devices in power system integrated with wind power using modified krill herd algorithm,” COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 2023. doi:10.1108/compel-12-2021-0502 DOI: https://doi.org/10.1108/COMPEL-12-2021-0502
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.