Enhancing Power Grid Reliability with AGC and PSO: Insights from the Timimoun Photovoltaic Park
DOI:
https://doi.org/10.4108/ew.3669Keywords:
Renewable Energy Integration, Automatic Generation Control, Particle Swarm Optimization, Electrical Network Stability, Dynamic ZIP loads, Photovoltaic park, PIAT electrical gridAbstract
This article investigates the impact of integrating Variable Renewable Energy (VRE), specifically solar energy from the Timimoun Photovoltaic Park, on the PIAT electrical grid stability in southern Algeria. The study focuses on how fluctuations in power demand and changes in weather conditions can affect grid frequency control, potentially leading to transient stability issues. To address these challenges, the research proposes the implementation of an Automatic Generation Control (AGC) system combined with the Particle Swarm Optimization (PSO) algorithm to optimize solar energy distribution. This approach effectively regulates real-time frequency deviations resulting from VRE integration, ensuring balanced supply and demand, and controllable power factor injection. The findings demonstrate that the integration of AGC and PSO stabilizes the frequency at the Timimoun Photovoltaic Park and reduces total active losses in the PIAT network by 13.88%. Additionally, strategic power factor control at the injection buses ensures optimal power quality and maximizes the utilization of the photovoltaic park, leading to a 4.84% reduction in the PIAT grid's reliance on gas turbines. This approach contributes to lowering operational costs, reducing carbon emissions, and supporting a transition to greener energy.
Downloads
References
[1] A. A. Tadjeddine, M. S. Bendelhoum, R. I. Bendjillali, H. Hamiani, and S. Djelaila, “VRE integrating in PIAT grid with AFRR using PSS, MPPT, and PSO-based techniques: A case study kabertene,” EAI Endorsed Transactions on Energy Web, vol. 10, 2023. doi:10.4108/ew.3378
[2] T. A. Abderrazak et al., “Enhancing frequency system damping efficiency via optimal integration of VRE in grid,” 2023 Second International Conference on Energy Transition and Security (ICETS), pp. 1–6, Dec. 2023. doi:10.1109/icets60996.2023.10410747
[3] A. Bouraiou et al., “Temperature supervision and monitoring based on embedded controller using SCADA platform,” 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC), pp. 1–5, May 2024. doi:10.1109/iceeac61226.2024.10576405
[4] A. Lagouch, R. Maouedj, A. Benatiallah, S. Regragui, and M. Benhadji, “20 MW solar power plant performance analysis under Saharan condition,” 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC), pp. 1–5, May 2024. doi:10.1109/iceeac61226.2024.10576275
[5] F. Osorio, M. A. Mantilla, J. M. Rey, and J. F. Petit, “A flexible control strategy for multi-functional PV inverters with load compensation capabilities considering current limitations and unbalanced load conditions,” Energies, vol. 17, no. 17, p. 4218, Aug. 2024. doi:10.3390/en17174218
[6] S. M. S. Ullah, S. Ebrahimi, F. Ferdowsi, and M. Barati, “Techno-economic impacts of volt-var control on the high penetration of solar PV interconnection,” Cleaner Energy Systems, vol. 5, p. 100067, 2023. doi:10.1016/j.cles.2023.100067
[7] A. Guenounou, M. Aillerie, and D. Lafri, “Modeling of the household electricity consumption in the regions of southern Algeria. Proposition of a new subsidy plan,” technologies and materials for renewable energy, environment and sustainability: TMREES22Fr, 2023. doi:10.1063/5.0129394.
[8] A. Hilawie and F. Shewarega, “Static Voltage Stability Assessment of Ethiopian power System Using Normalized Active Power Margin Index”, EAI Endorsed Trans Energy Web, vol. 9, no. 40, p. e5, Dec. 2022.
[9] N. Rajesh, M. Venu Gopala Rao, and R. Srinivasa Rao, “Power Quality Improvement using Parallel Connected FACTS Device with Simplified d-q Control”, EAI Endorsed Trans Energy Web, vol. 9, no. 40, p. e2, Jul. 2022.
[10] H. Dehghani Tafti et al., “Adaptive Power System frequency support from distributed photovoltaic systems,” Solar Energy, vol. 257, pp. 231–239, 2023. doi:10.1016/j.solener.2023.04.017.
[11] D. E. Abah, G. S. Shehu, A. S. Abubakar, and S. Salisu, A novel multistage controller for load frequency control of a multi-area network integrated with Renewable Energy Sources, Oct. 2023. doi:10.21203/rs.3.rs-3385334/v1
[12] A. M. Ewais et al., “Adaptive frequency control in smart microgrid using controlled loads supported by real-time implementation,” PLOS 1, vol. 18, no. 4, 2023. doi:10.1371/journal.pone.0283561
[13] P. Fan et al., “A Load Frequency coordinated control strategy for multimicrogrids with V2G based on improved Ma-DDPG,” International Journal of Electrical Power & Energy Systems, vol. 146, p. 108765, 2023. doi:10.1016/j.ijepes.2022.108765
[14] G. M. Meseret and L. C. Saikia, “AGC in the multi-area thermal system with integration of distribution generation on the frequency of the system using the classical PID & Hybrid Neuro-Fuzzy Controllers,” IETE Journal of Research, pp. 1–10, 2022. doi:10.1080/03772063.2022.2083024
[15] T. Lei et al., “Performance analysis of grid-connected distributed generation system integrating a hybrid wind-PV farm using UPQC,” Complexity, vol. 2022, pp. 1–14, 2022. doi:10.1155/2022/4572145.
[16] D. K. Mishra, L. Li, J. Zhang, and Md. J. Hossain, “Challenges and viewpoints of load frequency control in deregulated power system,” Power System Frequency Control, pp. 117–132, 2023. doi:10.1016/b978-0-443-18426-0.00010-8
[17] A. Gupta, “Power Quality Evaluation of photovoltaic grid interfaced cascaded H-bridge nine-level multilevel inverter systems using D-STATCOM and UPQC,” Energy, vol. 238, p. 121707, 2022. doi:10.1016/j.energy.2021.121707
[18] M. Zolfaghari and G. B. Gharehpetian, “Decentralized Power Exchange control methods among subsystems in future power network,” Decentralized Frameworks for Future Power Systems, pp. 345–367, 2022. doi:10.1016/b978-0-323-91698-1.00003-0
[19] P. Kuntal, A. Mathur, and M. N. Alam, “Optimal Power Scheduling of Hybrid Power System,” 2021 IEEE 2nd International Conference on Smart Technologies for Power, Energy and Control (STPEC), 2021. doi:10.1109/stpec52385.2021.9718620.
[20] J. N. Namratha, P. Venkatasubramanian, and A. Rama Koteswara Rao, “A hybrid SCSO-QNN approach based load frequency control of three area power system with renewable sources using FOPID controller,” Smart Science, pp. 1–15, Jun. 2024. doi:10.1080/23080477.2024.2355747
[21] S. Kim, “A novel preventive frequency stability constrained OPF considering wind power fluctuation,” 2022 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia), 2022. doi:10.1109/isgtasia54193.2022.10003619
[22] A. A. Tadjeddine, M. S. Bendelhoum, I. Arbaoui, R. I. Bendjillali, and M. Alami, “Optimizing Frequency Stability in Distributed Power Grids through Advanced Power Flow Control with 25MW Photovoltaic Integration”, Adv Syst Sci Appl, vol. 23, no. 4, pp. 18–30, Dec. 2023.
[23] S. Shukla, A. Gupta, and R. Pandey, “Load frequency control for multi-area power system using PSO-based technique,” Artificial Intelligence Techniques in Power Systems Operations and Analysis, pp. 17–35, 2023. doi:10.1201/9781003301820-2
[24] B. Khokhar, K. P. Parmar, T. Thakur, and D. P. Kothari, “LFC Study of a multi-microgrid system,” Load Frequency Control of Microgrids, pp. 133–145, May 2024. doi:10.1201/9781003477136-9
[25] T. A. Abderrazak, A. Iliace, H. Hichem, B. Mohamed Sofiane, and B. Ridha Ilyas, “Robust hybrid control strategy for active power management in Kabertene wind farm within Algeria’s Piat Grid,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 4, pp. 2202–2212, Aug. 2024. doi:10.11591/eei.v13i4.7270
[26] K. WADHWA and S. K. Gupta, “Cuckoo search optimization technique for automatic generation control (AGC) in an integrated power system with multiple power sources,” 2023. doi:10.2139/ssrn.4401463
[27] M. Berto, L. Alberti, and S. Bolognani, “Measurement of the self-sensing capability of synchronous machines for high frequency signal injection sensorless drives,” IEEE Transactions on Industry Applications, vol. 59, no. 3, pp. 3381–3389, 2023. doi:10.1109/tia.2023.3241887
[28] D. Li, W. Hua, and Y. Mi, Estimation of power system inertia constant using bayesian inertia estimation method, 2024. doi:10.2139/ssrn.4747552
[29] H. Abubakr et al., “Adaptive LFC incorporating modified virtual rotor to regulate frequency and tie-line power flow in multi-area microgrids,” IEEE Access, vol. 10, pp. 33248–33268, 2022. doi:10.1109/access.2022.3161505
[30] R. W. Kenyon et al., “Autonomous Grid-Forming Inverter Exponential Droop Control for Improved Frequency Stability,” pp. 1–10, 2024. doi: 10.48550/arXiv.2408.12709
[31] X. Chen, Y. Jiang, V. Terzija, and C. Lu, “Review on measurement-based frequency dynamics monitoring and analyzing in renewable energy dominated Power Systems,” International Journal of Electrical Power & Energy Systems, vol. 155, p. 109520, Jan. 2024. doi:10.1016/j.ijepes.2023.109520
[32] M. Muftić Dedović, S. Avdaković, M. Musić, and I. Kuzle, “Enhancing power system stability with adaptive under frequency load shedding using SYNCHROPHASOR measurements and empirical mode decomposition,” International Journal of Electrical Power & Energy Systems, vol. 160, p. 110133, Sep. 2024. doi:10.1016/j.ijepes.2024.110133
[33] L. Meegahapola, S. Bu, and M. Gu, “Frequency stability and control of hybrid AC/DC power grids,” Power Systems, pp. 161–188, 2022. doi:10.1007/978-3-031-06384-8_6
[34] A. K. Mohapatra, S. Mohapatra, A. Pattnaik, and P. C. Sahu, “Design and modelling of an AI governed type-2 fuzzy tilt control strategy for AGC of a multi-source power grid in constraint to optimal dispatch,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 7, p. 100487, Mar. 2024. doi:10.1016/j.prime.2024.100487
[35] Z. Wang, Y. Wang, Z. Ding, J. Wu, and K. Zhang, “Optimal AGC allocation strategy based on data-driven forecast of frequency distribution key parameters,” Electric Power Systems Research, vol. 226, p. 109916, Jan. 2024. doi:10.1016/j.epsr.2023.109916
[36] P. Zhao, Z. Li, X. Bai, J. Su, and X. Chang, “Stochastic real-time dispatch considering AGC and electric-gas dynamic interaction: Fine-grained modeling and noniterative decentralized solutions,” Applied Energy, vol. 375, p. 123976, Dec. 2024. doi:10.1016/j.apenergy.2024.123976
[37] P. Maucher, S. Remppis, D. Schlipf, and H. Lens, “Handling limitations in the Interzonal exchange of Automatic Frequency Restoration Reserves,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 1437–1442, 2023. doi:10.1016/j.ifacol.2023.10.1823
[38] D. Cremoncini et al., “Optimal participation of a wind and hybrid battery storage system in the day-ahead and Automatic Frequency Restoration Reserve Markets,” Journal of Energy Storage, vol. 94, p. 112309, Jul. 2024. doi:10.1016/j.est.2024.112309
[39] W. Kang et al., “Distributed control of virtual energy storage systems for voltage regulation in low voltage distribution networks subjects to varying time delays,” Applied Energy, vol. 376, p. 124295, Dec. 2024. doi:10.1016/j.apenergy.2024.124295
[40] L. Deman and Q. Boucher, “Impact of renewable energy generation on Power Reserve Energy Demand,” Energy Economics, vol. 128, p. 107173, Dec. 2023. doi:10.1016/j.eneco.2023.107173
Downloads
Published
Issue
Section
License
Copyright (c) 2024 EAI Endorsed Transactions on Energy Web

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.