Applying Artificial Intelligence in Forecasting the Output of Industrial Solar Power Plant in Vietnam
DOI:
https://doi.org/10.4108/eai.29-3-2021.169166Keywords:
Long Short – Term Memory, Industrial PV power plant, Forecasting PV power, Artificial IntelligenceAbstract
This paper uses recurrent neural network (Long Short – Term Memory - LSTM network) to build a model to forecast short-term generation capacity of Phong Dien solar power plant, (48 MWp – 35 MWAC) located in Thua Thien Hue Province, Viet Nam, with input factors including meteorological parameters. The authors conducted experiments to find the optimal structure of the model corresponding to the conditions of the plant and the data collection. Through this model, meteorological forecast data sets from commercial suppliers were used to forecast the plant's output power. The comments about the result as well as the further study direction are analysed and suggested.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.