Towards Smart Railways: A Charging Strategy for Railway Energy Storage Systems
DOI:
https://doi.org/10.4108/eai.14-1-2021.168136Keywords:
Energy Efficiency, Energy Storage Systems, Fuzzy Logic Controllers, Genetic Algorithms, Smart RailwaysAbstract
The huge power requirements of future railways require the usage of energy-efficient strategies towards amore intelligent railway system. The usage of on-board energy storage systems enables better usage of the traction energy with a higher degree of freedom. In this article is proposed a top-level charging controller forthe on-board and wayside railway energy storage systems. Its structure comprehends two processing levels: a real-time fuzzy logic controller for each energy storage system, and a genetic algorithm meta-heuristic, that remotely and automatically tune the fuzzy rules weight. As global results, the reduction of regenerated energy is 22.3% with the fuzzy logic controller. With the optimization strategy, this reduction can be further extendedto 28.7%. The need for a smart railway framework is also discussed towards a realistic implementation of such charging strategy. Thus, with a high degree of flexibility, the efficiency of railway energy systems can be increased with the proposed framework.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.
Funding data
-
Fundação para a Ciência e a Tecnologia
Grant numbers PD/BD/128051/2016