Distributed energy storage hierarchical partition dispatch control of virtual power plant based on SaDE-BBO algorithm

Authors

  • Tianyi Yu State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin, 300450, China
  • Shijia Wei State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin, 300450, China
  • Tao Lu State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin, 300450, China
  • Zhipeng Zhang State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin, 300450, China
  • Ning Sun State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin, 300450, China

DOI:

https://doi.org/10.4108/ew.9072

Keywords:

SaDE-BBO algorithm, Virtual power plant, Distributed energy storage, Hierarchical partitioning, Dispatch control, Uncertainty factors

Abstract

To improve the response ability of the virtual power plant during operation and the adjustment ability when the load fluctuates, and ensure its stable operation, a virtual power plant distributed energy storage hierarchical partition dispatch control method based on the SaDE-BBO algorithm is proposed. This method is based on the operation structure of the virtual power plant, analyzes the operating characteristics of the distributed energy storage system and the output of uncertainty factors, considers the grid load, renewable energy and distributed energy storage on the time scale, and constructs hierarchical partitions of the virtual power plant. The dispatch model determines the day-ahead and day-in-day hierarchical partition dispatch control objective functions, and sets corresponding constraints; the dispatch control model based on the solution of the SaDE-BBO algorithm outputs the virtual power plant distributed energy storage hierarchical partition dispatch control optimization plan. The test results show that the maximum load peak value after dispatch control through this method is 40.9 MW; the active power loss results are all below 10 MW, real-time response to control instructions ensures the safety and stability of the voltage of the virtual power plant under the access of renewable energy, and the nodal voltage fluctuated within the permissible range of 0.95 to 1.05 p.u.

Downloads

References

[1] Ren, Z., Verbic, G., & Guerrero, J. (2022).Multi-period dynamic tariffs for prosumers participating in virtual power plants[J].Electric Power Systems Research, 212(Nov.):1-7. DOI: https://doi.org/10.1016/j.epsr.2022.108478

[2] Bjrk, J., Johansson, K. H., & Drfler, F. (2023).Dynamic Virtual Power Plant Design for Fast Frequency Reserves: Coordinating Hydro and Wind.IEEE transactions on control of network systems, 10(3):1266-1278. DOI: https://doi.org/10.1109/TCNS.2022.3181553

[3] El-Bahay, M. H., Lotfy, M. E., & El-Hameed, M. A. (2022).Computational Methods to Mitigate the Effect of High Penetration of Renewable Energy Sources on Power System Frequency Regulation: A Comprehensive Review.Archives of computational methods in engineering: State of the art reviews, 30(1):703-726. DOI: https://doi.org/10.1007/s11831-022-09813-9

[4] Goodarzi, M., & Li, Q. (2022).Evaluate the capacity of electricity-driven water facilities in small communities as virtual energy storage.Applied energy, 309(Mar.1):118349.1-118349.12. DOI: https://doi.org/10.1016/j.apenergy.2021.118349

[5] Barala, C. P., Mathuria, P., & Bhakar, R. (2023).Distribution locational marginal price based hierarchical scheduling framework for grid flexibility from virtual energy storage systems.Electric Power Systems Research, 214(Jan. Pt.A):1-11. DOI: https://doi.org/10.1016/j.epsr.2022.108866

[6] Pandey, A. K., Jadoun, V. K., & Ns, J. (2023).Real-time and day-ahead risk averse multi-objective operational scheduling of virtual power plant using modified Harris Hawk's optimization.Electric Power Systems Research, 220(Jul.):109285.1-109285.15. DOI: https://doi.org/10.1016/j.epsr.2023.109285

[7] Ghanuni, A., Sharifi, R., & Farahani, H. F. (2023).A risk-based multi-objective energy scheduling and bidding strategy for a technical virtual power plant.Electric Power Systems Research, 220(Jul.):109344.1-109344.12. DOI: https://doi.org/10.1016/j.epsr.2023.109344

[8] Ebrahimi, A., & Ziabasharhagh, M. (2022).Introducing a novel control algorithm and scheduling procedure for optimal operation of energy storage systems.Energy, 252(Aug.1):123991.1-123991.17. DOI: https://doi.org/10.1016/j.energy.2022.123991

[9] Jain, A., Rai, S., Srinivas, R., & Al-Raoush, R. I. (2022).Bioinspired modeling and biogeography-based optimization of electrocoagulation parameters for enhanced heavy metal removal.Journal of cleaner production, 338(Mar.1):130622.1-130622.14. DOI: https://doi.org/10.1016/j.jclepro.2022.130622

[10] Visan, C., Pascu, O., Stanescu, M., Sandru, E. D., Diaconu, C., & Buzo, A., et al. (2022).Automated circuit sizing with multi-objective optimization based on differential evolution and Bayesian inference.Knowledge-based systems, 258(Dec.22):1-18. DOI: https://doi.org/10.1016/j.knosys.2022.109987

[11] Vijayalakshmi, K., Vijayakumar, K., & Nandhakumar, K. (2022).Prediction of virtual energy storage capacity of the air-conditioner using a stochastic gradient descent based artificial neural network.Electric Power Systems Research, 208(Jul.):107879.1-107879.10. DOI: https://doi.org/10.1016/j.epsr.2022.107879

[12] Lima, R., Conejo, A., Giraldi, L., Maitre, O. L., Hoteit, I., & Knio, O. (2022).Risk-Averse Stochastic Programming vs. Adaptive Robust Optimization: A Virtual Power Plant Application.INFORMS journal on computing, 34(3):1795-1818. DOI: https://doi.org/10.1287/ijoc.2022.1157

[13] Sepehrzad, R., Mahmoodi, A., Ghalebi, S. Y., Moridi, A. R., & Seifi, A. R. (2022).Intelligent hierarchical energy and power management to control the voltage and frequency of micro-grids based on power uncertainties and communication latency.Electric Power Systems Research, 202(Jan.):107567.1-107567.24. DOI: https://doi.org/10.1016/j.epsr.2021.107567

[14] Sepehrzad, R., Rahimi, M. K., Al-Durra, A., Allahbakhshi, M., & Moridi, A. (2022).Optimal energy management of distributed generation in micro-grid to control the voltage and frequency based on PSO-adaptive virtual impedance method.Electric Power Systems Research, 208(Jul.):107881.1-107881.20. DOI: https://doi.org/10.1016/j.epsr.2022.107881

[15] Rahmani, E., Zadehbagheri, M., Kiani, M., & Mohammadi, S. (2023).Probabilistic reliability management of energy storage systems in connected/islanding microgrids with renewable energy.Electric Power Systems Research, 214(Jan. Pt.A):1-11. DOI: https://doi.org/10.1016/j.epsr.2022.108891

[16] Jeon, S., & Choi, D. H. (2022).Joint optimization of Volt/VAR control and mobile energy storage system scheduling in active power distribution networks under PV prediction uncertainty[J].Applied energy,2022,310(Mar.15):118488.1-118488.12. DOI: https://doi.org/10.1016/j.apenergy.2021.118488

[17] Sreenivasulu, G., Sahoo, N. C., & Balakrishna, P. (2022).Low economic risk operation of transactive energy markets with renewable sources and virtual power plants using self-adaptive particle swarm optimization[J].Electrical engineering,2022,104(4):2729-2755. DOI: https://doi.org/10.1007/s00202-022-01514-7

[18] Su S.W., Ji Y.X., Zou, Y.,et al.(2022) The Optimized Scheduling of Virtual Power Plant is Considered. Computer Simulation,39(02):56-61.

[19] Difonzo, R., Allio, A., & Savoldi, C. L. (2022).Biogeography-Based Optimization of the Resonator Cooling in a MW-Class Gyrotron for Fusion Applications.IEEE Transactions on Plasma Science, 50(11 Pt.1):4074-4079. DOI: https://doi.org/10.1109/TPS.2022.3178054

[20] Kumar, L., Kar, M. M., & Kumar, S. (2022).Statistical analysis based reactive power optimization using improved differential evolutionary algorithm.Expert systems: The international journal of knowledge engineering, 40(1):e13091.1-e13091.31. DOI: https://doi.org/10.1111/exsy.13091

Downloads

Published

14-04-2025

How to Cite

1.
Yu T, Wei S, Lu T, Zhang Z, Sun N. Distributed energy storage hierarchical partition dispatch control of virtual power plant based on SaDE-BBO algorithm. EAI Endorsed Trans Energy Web [Internet]. 2025 Apr. 14 [cited 2025 Jun. 5];12. Available from: https://publications.eai.eu/index.php/ew/article/view/9072