Smart Grid Implementation Based on Solar Generation for Load Demand Management in Najaf City, Iraq

Authors

DOI:

https://doi.org/10.4108/ew.9151

Keywords:

duck curve, solar radiation, SG, PV system, smart grid, electricity, Najaf

Abstract

Electrical Smart Grids (SG) contain numerous energy and operational measures, including renewable energy resources, energy efficiency resources, smart meters, and appliances. Investigating their applicability in a geographical area is important to provide a firm background to practical considerations. In this paper, the SG model is investigated, considering the available solar generation, hence enhancing residential load demand in Najaf city, Iraq. The analysis begins with an assessment of the electrical load profile characteristics, followed by choosing the optimum orientation of solar panels for the cities, which has been presented using MATLAB software. The optimum tilt angle for each month is estimated for three Photovoltaic (PV) systems of three sizes (1.5kWp, 2kWp, and 2.5 kWp). Furthermore, the study of their generation and impact on load demand is analyzed. The economic and financial analysis has been presented with payback period and benefits. The duck curve generated by the proposed PV systems is discussed. It is found that the annual demand saving of the proposed solar systems is 22%, 31%, and 36%, respectively. The hourly demand saving is presented, and it has been observed that there is overgeneration using 2kWp and 2.5 kWp PV systems, resulting in reshaping the load curve and producing the duck curve. The future work can be summarized by suggesting management of the battery system for the overgeneration.

Downloads

Download data is not yet available.

References

[1] Das, B. K., Alotaibi, M. A., Das, P., Islam, M. S., Das, S. K., & Hossain, M. A. (2021). Feasibility and techno-economic analysis of stand-alone and grid-connected PV/Wind/Diesel/Batt hybrid energy system: A case study. Energy Strategy Reviews, 37, 100673.

DOI: https://doi.org/10.1016/j.esr.2021.100673

[2] Khan, K. A., Quamar, M. M., Al-Qahtani, F. H., Asif, M., Alqahtani, M., & Khalid, M. (2023). Smart grid infrastructure and renewable energy deployment: A conceptual review of Saudi Arabia. Energy Strategy Reviews, 50, 101247. ‏

DOI: https://doi.org/10.1016/j.esr.2023.101247

[3] Muslim, H. N. (2019). Challenges and barriers in Iraq for solar PV generation: a review. International Journal of Energy and Environment, 10(3), 97-102. ‏

[4] Renewable Energy Policy Network for the 21st Century (REN21). Renewables Global Status Report: global overview. 2023.

URL: https://www.ren21.net/wp-content/uploads/2019/05/GSR2023_GlobalOverview_Full_Report_with_endnotes_web.pdf

[5] Dabur, P., Singh, G., & Yadav, N. K. (2012). Electricity demand side management: Various concept and prospects. International Journal of Recent Technology and Engineering (IJRTE), 1(1), 1-6. ‏

[6] Ohanu, C. P., Rufai, S. A., & Oluchi, U. C. (2024). A comprehensive review of recent developments in smart grid through renewable energy resources integration. Heliyon.

DOI: ‏ https://doi.org/10.1016/j.heliyon.2024.e25705

[7] Powell, J., McCafferty-Leroux, A., Hilal, W., & Gadsden, S. A. (2024). Smart grids: A comprehensive survey of challenges, industry applications, and future trends. Energy Reports, 11, 5760-5785. ‏

DOI: https://doi.org/10.1016/j.egyr.2024.05.051

[8] Muslim, H. N., Alkhazraji, A. A., & Salih, M. A. (2017). Electrical load profile management based on storage energy scenarios for residential PV storage system. International Journal of Energy and Environment, 8(5), 427-440. ‏

[9] Solar GIS Map.

URL:

https://solargis.com/resources/free-maps-and-gis-data?locality=iraq

[10] World Bank Group. Iraq Systematic Country Diagnostic. February 3, 2017, Report No. 112333-IQ.

URL: https://documents1.worldbank.org/curated/es/542811487277729890/pdf/IRAQ-SCD-FINAL-cleared-02132017.pdf

[11] Abbood, A. A., Salih, M. A., & Muslim, H. N. (2017). Management of electricity peak load for residential sector in Baghdad city by using solar generation. International Journal of Energy and Environment, 8(1), 63. ‏

[12] Muslim, H. N. (2019). Solar tilt angle optimization of PV systems for different case studies. EAI Endorsed Transactions on Energy Web, 6(23), e7-e7. ‏

DOI: https://doi.org/10.4108/eai.13-7-2018.157038

[13] Dihrab, S. S., & Sopian, K. (2010). Electricity generation of hybrid PV/wind systems in Iraq. Renewable Energy, 35(6), 1303-1307. ‏

DOI: https://doi.org/10.1016/j.renene.2009.12.010

[14] Abbood, A. A., Salih, M. A., & Mohammed, A. Y. (2018). Modeling and simulation of 1mw grid connected photovoltaic system in Karbala city. International Journal of Energy and Environment, 9(2), 153-168. ‏

[15] Al-Janabi, S. M. D., & Jumaa, F. A. (2024). Sizing of Photovoltaic Standalone System in Mandali City/Iraq: A Case Study. Salud, Ciencia y Tecnología-Serie de Conferencias, 3, 835-835. ‏

DOI: https://doi.org/10.56294/sctconf2024835

[16] Shakir, A. M., Yousif, S. M., & Mahmood, A. L. (2022). An optimum location of on-grid bifacial based photovoltaic system in Iraq. International Journal of Electrical & Computer Engineering (2088-8708), 12(1). ‏

DOI: https://doi.org/10.11591/ijece.v12i1.pp250-261

[17] Mahmood, A. L. (2019). Design and simulation of stand-alone pv system for electronic and communications engineering department laboratories in Al-Nahrain University. EAI endorsed Transactions on Energy web, 6(22), e9-e9.

‏DOI: https://doi.org/10.4108/eai.13-7-2018.156438

[18] Khasawneh, H. J., Al-Khatib, W. M., Ghazal, Z. A., Al-Hadi, A. M., Arabiyat, Z. M., & Habahbeh, O. (2025). Optimizing solar energy utilization in facilities using machine learning-based scheduling techniques: A case study. Renewable and Sustainable Energy Transition, 100114.

DOI: https://doi.org/10.1016/j.rset.2025.100114

[19] Elfatah, A. A., Hashim, F. A., Mostafa, R. R., Abd El-Sattar, H., & Kamel, S. (2023). Energy management of hybrid PV/diesel/battery systems: A modified flow direction algorithm for optimal sizing design—A case study in Luxor, Egypt. Renewable Energy, 218, 119333

‏DOI: https://doi.org/10.1016/j.renene.2023.119333

[20] Torkan, R., Ilinca, A., & Ghorbanzadeh, M. (2022). A genetic algorithm optimization approach for smart energy management of microgrids. Renewable Energy, 197, 852-863.

DOI: https://doi.org/10.1016/j.renene.2022.07.055

[21] Muslim, H. N., Alkhazraji, A., & Salih, M. A. (2017). Electrical load profile analysis and investigation of Baghdad city for 2012-2014. International Journal of Current Engineering and Technology, 7(3). ‏

[22] Chaichan, M. T., & Kazem, H. A. (2018). Generating electricity using photovoltaic solar plants in Iraq (pp. 47-82). Cham, Switzerland: Springer International Publishing.

DOI: ‏ https://doi.org/10.1007/978-3-319-75031-6

[23] Duffie, J. A., & Beckman, W. A. (1980). Solar engineering of thermal processes (p. 16591). New York: Wiley. ‏

[24] Skoplaki, E. P. J. A., & Palyvos, J. A. (2009). Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renewable energy, 34(1), 23-29.

DOI: ‏ https://doi.org/10.1016/j.renene.2008.04.009

[25] Velasco, G., Piqué, R., Guinjoan, F., Casellas, F., & De La Hoz, J. (2010, September). Power sizing factor design of central inverter PV grid-connected systems: a simulation approach. In Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010 (pp. S9-32). IEEE.

[26] Ishaq, M., Ibrahim, U. H., & Abubakar, H. (2013). Design of an off grid photovoltaic system: A case study of Government Technical College, Wudil, Kano State. International Journal of Technology Enhancements and Emerging Engineering Research, 2(12), 175-181. ‏

[27] Muslim, H. N., Alkhazraji, A., & Salih, M. A. (2018). Feasibility study of using 2kWp residential PV system comparing with 2.5 kVA gasoline generator (Case study: Baghdad city). International Journal of Energy and Environment, 9(1), 57-62. ‏

[28] Nabil, M. H., Barua, J., Eiva, U. R. J., Ullah, M. A., Chowdhury, T. A., Siddiquee, S. S., ... & Das, R. (2024). Techno-economic analysis of commercial-scale 15 MW on-grid ground solar PV systems in Bakalia: A feasibility study proposed for BPDB. Energy Nexus, 14, 100286.

‏DOI: https://doi.org/10.1016/j.nexus.2024.100286

[29] Al-Saqlawi, J., Madani, K., & Mac Dowell, N. (2018). Techno-economic feasibility of grid-independent residential roof-top solar PV systems in Muscat, Oman. Energy Conversion and Management, 178, 322-334. ‏

DOI: https://doi.org/10.1016/j.enconman.2018.10.021

[30] Irfan, M., Iqbal, J., Iqbal, A., Iqbal, Z., Riaz, R. A., & Mehmood, A. (2017). Opportunities and challenges in control of smart grids–Pakistani perspective. Renewable and Sustainable Energy Reviews, 71, 652-674.

DOI: ‏ http://dx.doi.org/10.1016/j.rser.2016.12.095

[31] Okoye, C. O., & Oranekwu-Okoye, B. C. (2018). Economic feasibility of solar PV system for rural electrification in Sub-Sahara Africa. Renewable and Sustainable Energy Reviews, 82, 2537-2547. ‏

DOI: http://dx.doi.org/10.1016/j.rser.2017.09.054

Downloads

Published

19-08-2025

How to Cite

1.
Muslim DHN. Smart Grid Implementation Based on Solar Generation for Load Demand Management in Najaf City, Iraq. EAI Endorsed Trans Energy Web [Internet]. 2025 Aug. 19 [cited 2025 Sep. 3];12. Available from: https://publications.eai.eu/index.php/ew/article/view/9151