A comparative study based on the Genetic Algorithm (GA) method for the optimal sizing of the standalone photovoltaic system in the Ngoundiane site
DOI:
https://doi.org/10.4108/eai.13-7-2018.155642Keywords:
Standalone PV System, Optimization, Genetic Algorithm, «Objective» functionAbstract
We study a sizing method using Artificial Intelligence Techniques (AI) to find the optimal sizes of a standalone photovoltaic system in Ngoundiane, Senegal. The sizing of the PV system is considered here as a mono-objective problem and the Total Life Cycle Cost (TLCC) is the « Objective » function to minimize. Based on some constraints and after 10 simulations, the optimisation gives, as a result, an optimal value of TLCC corresponding to the combination of 225750 WC/8100 Ah. This result show that the method using Genetic Algorithm (GA) increases considerably the photovoltaic capacity compared to the intuitive and numerical methods used in our previous works. The GA method better covers the load demand, with more long time, when compared with those obtained with numerical method. These results confirm that this method is effective and reliable because it allows the design of a PV system that satisfies the load demand of the Ngoundiane site with a lower cost.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.