Data-Driven Decision-Making Method of Intelligent Supervision and Command Platform in Offshore Wind Power Operation and Maintenance

Authors

  • Jia Kun Wang Shandong Guohua Era Investment Development Co., Ltd.
  • Yi Liu Guohua (Rushan) New Energy Co., Ltd.
  • Suowei Song Guohua (Rushan) New Energy Co., Ltd

DOI:

https://doi.org/10.4108/ew.9527

Keywords:

Offshore wind power, LSTM networks, SCADA data, predictive maintenance , anomaly detection

Abstract

INTRODUCTION: Innovations in offshore wind farm operation and maintenance require intelligent monitoring platforms that can leverage high-resolution SCADA data to enhance predictive precision and operational effectiveness. With the use of deep learning algorithms, specifically LSTM, this work achieves improved forecasting and anomaly detection accuracy on a real wind turbine dataset recorded in Turkey in 2018.

OBJECTIVES: The proposed approach involves extensive data preprocessing, including cleaning, synchronization, and normalization, followed by advanced feature extraction using signal processing transforms such as the Fast Fourier Transform and wavelet transforms.

METHODS: Different predictive models, including Linear Regression, Random Forest Regression, Support Vector Regression, Gradient Boosting Machines, and LSTM, were trained and tested within a Python setting. The LSTM model achieved a remarkable improvement, with a Mean Absolute Error of 78.6 kW, compared to traditional machine learning methods such as RF Regression, SV Regression, and Gradient Boosting Machines. The enhanced accuracy results from the LSTM's ability to derive intricate temporal patterns and nonlinear relationships inherent in sequential turbine operational data.

RESULTS: The results affirm the potential of deep learning approaches in reshaping offshore wind turbine management and highlight the importance of tailored temporal modeling for resolving the specific challenges of renewable energy systems.

CONCLUSION: The system not only accurately predicts power production but also performs anomaly detection and optimises maintenance scheduling, resulting in enhanced reliability and energy production for offshore wind farms. By integrating these data-oriented approaches with an intelligent command and supervision system, the strategy facilitates proactive decision-making and real-time operation control.

Downloads

Download data is not yet available.

References

[1] Behara K, Saha AK. Artificial intelligence control system applied in smart grid integrated doubly fed induction generator-based wind turbine: a review. Energies. 2022;15(17):6488. doi:10.3390/en15176488 DOI: https://doi.org/10.3390/en15176488

[2] Mitchell D, et al. Symbiotic system of systems design for safe and resilient autonomous robotics in offshore wind farms. IEEE Access. 2021;9:141421-141452. doi:10.1109/ACCESS.2021.3117727 DOI: https://doi.org/10.1109/ACCESS.2021.3117727

[3] Kou L, et al. Review on monitoring, operation and maintenance of smart offshore wind farms. Sensors. 2022;22(8):2822. doi:10.3390/s22082822 DOI: https://doi.org/10.3390/s22082822

[4] Mwangi A, Sahay R, Fumagalli E, Gryning M, Gibescu M. Towards a software-defined industrial IoT-edge network for next-generation offshore wind farms: state of the art, resilience, and self-X network and service management. Energies. 2024;17(12):2897. doi:10.3390/en17122897 DOI: https://doi.org/10.3390/en17122897

[5] Didier F, Liu YC, Laghrouche S, Depernet D. A comprehensive review on advanced control methods for floating offshore wind turbine systems above the rated wind speed. Energies. 2024;17(10):2257. doi:10.3390/en17102257 DOI: https://doi.org/10.3390/en17102257

[6] Segundo Sevilla FR, et al. State-of-the-art of data collection, analytics, and future needs of transmission utilities worldwide to account for the continuous growth of sensing data. Int J Electr Power Energy Syst. 2022;137:107772. doi:10.1016/j.ijepes.2021.107772 DOI: https://doi.org/10.1016/j.ijepes.2021.107772

[7] Khalid O, et al. Applications of robotics in floating offshore wind farm operations and maintenance: literature review and trends. Wind Energy. 2022;25(11):1880-1899. doi:10.1002/we.2773 DOI: https://doi.org/10.1002/we.2773

[8] Ambarita EE, Karlsen A, Scibilia F, Hasan A. Industrial digital twins in offshore wind farms. Energy Inform. 2024;7(1):5. doi:10.1186/s42162-024-00306-6 DOI: https://doi.org/10.1186/s42162-024-00306-6

[9] Issa R, et al. A data-driven digital twin of electric vehicle Li-ion battery state-of-charge estimation enabled by driving behavior application programming interfaces. Batteries. 2023;9(10):521. doi:10.3390/batteries9100521 DOI: https://doi.org/10.3390/batteries9100521

[10] Yang C, et al. Comprehensive analysis and evaluation of the operation and maintenance of offshore wind power systems: a survey. Energies. 2023;16(14):5562. doi:10.3390/en16145562 DOI: https://doi.org/10.3390/en16145562

[11] Macaulay MO, Shafiee M. Machine learning techniques for robotic and autonomous inspection of mechanical systems and civil infrastructure. Auton Intell Syst. 2022;2(1):8. doi:10.1007/s43684-022-00025-3 DOI: https://doi.org/10.1007/s43684-022-00025-3

[12] Wang J, Lu Y, Li Z. Research on the integrated development of China’s marine industry empowered by the digital economy: architecture design and implementation pathways. Water. 2024;16(17):2381. doi:10.3390/w16172381 DOI: https://doi.org/10.3390/w16172381

[13] Data-Driven Operations & Maintenance for Offshore Wind Farms: Tools and Methodologies. ProQuest. Accessed May 22, 2025. https://www.proquest.com/openview/5d4dc2803e0675db89025215beac28df

[14] Pandit R, Wang J. A comprehensive review on enhancing wind turbine applications with advanced SCADA data analytics and practical insights. IET Renew Power Gener. 2024;18(4):722-742. doi:10.1049/rpg2.12920 DOI: https://doi.org/10.1049/rpg2.12920

[15] Wan A, Chenyu DU, Peng C, AL-Bukhaiti K. Predictive modeling of combined cycle power plant performance using a digital twin-based neural ODE approach. J Build Eng. 2024;96:110390. doi:10.1016/j.jobe.2024.110390 DOI: https://doi.org/10.1016/j.jobe.2024.110390

[16] Hadjoudj Y, Pandit R. A review on data-centric decision tools for offshore wind operation and maintenance activities: challenges and opportunities. Energy Sci Eng. 2023;11(4):1501-1515. doi:10.1002/ese3.1376 DOI: https://doi.org/10.1002/ese3.1376

[17] Yang R, Tang J, Saga R, Ma Z. A dynamic hidden Markov model with real-time updates for multi-risk meteorological forecasting in offshore wind power. Sustainability. 2025;17(8):3606. doi:10.3390/su17083606 DOI: https://doi.org/10.3390/su17083606

[18] Chen BQ, Liu K, Yu T, Li R. Enhancing reliability in floating offshore wind turbines through digital twin technology: a comprehensive review. Energies. 2024;17(8):1964. doi:10.3390/en17081964 DOI: https://doi.org/10.3390/en17081964

[19] Liu Z, Jiang A, Zhang A, Xing Z, Du X. Intelligent prediction method for operation and maintenance safety of prestressed steel structure based on digital twin technology. Adv Civ Eng. 2021;2021:6640198. doi:10.1155/2021/6640198 DOI: https://doi.org/10.1155/2021/6640198

[20] Chatterjee J, Dethlefs N. Scientometric review of artificial intelligence for operations & maintenance of wind turbines: the past, present and future. Renew Sustain Energy Rev. 2021;144:111051. doi:10.1016/j.rser.2021.111051. DOI: https://doi.org/10.1016/j.rser.2021.111051

[21] Yahia S, Ben Salem Y, Abdelkrim MN. 3D face recognition using local binary pattern and grey level co-occurrence matrix [conference]. In: Proceedings of the 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA); Dec 2016:328 338. doi:10.1109/STA.2016.7952047 DOI: https://doi.org/10.1109/STA.2016.7952047

[22] Rześny Cieplińska J, Szmelter Jarosz A. Stakeholders’ analysis of environmental sustainability in urban logistics: a case study of Tricity, Poland. Energies. 2021;14(5):1274. doi:10.3390/en14051274 DOI: https://doi.org/10.3390/en14051274

[23] Yu Y, Gao H, Chen Q, Liu P, Niu S. Demagnetization fault detection and location in PMSM based on correlation coefficient of branch current signals. Energies. 2022;15(8):2952. doi:10.3390/en15082952 DOI: https://doi.org/10.3390/en15082952

[24] Može M, Zupančič M, Sedmak I, Ferjančič K, Gjerkeš H, Golobič I. Revisiting the corresponding states based correlation for pool boiling critical heat flux. Energies. 2022;15(10):3524. doi:10.3390/en15103524 DOI: https://doi.org/10.3390/en15103524

[25] Kang L, Feeney A, Dixon S. The high frequency flexural ultrasonic transducer for transmitting and receiving ultrasound in air. IEEE Sens J. 2020;20(14):7653 7660. doi:10.1109/JSEN.2020.2981667 DOI: https://doi.org/10.1109/JSEN.2020.2981667

[26] Iwaniec J, Curdt Christiansen XL. Parents as agents: engaging children in environmental literacy in China. Sustainability. 2020;12(16):6605. doi:10.3390/su12166605 DOI: https://doi.org/10.3390/su12166605

[27] Tao W, He Y, Lei H, Zhang W, Sun Y, Wang T. Research on stator core temperature characteristics under static air gap eccentricity in turbo generator [conference]. In: 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS); Mar 2020:637 642. doi:10.1109/ICAIIS49377.2020.9194940 DOI: https://doi.org/10.1109/ICAIIS49377.2020.9194940

[28] Trottet L, Jayasooriya PR, Abeyasinghe UWAML, Mendis RBRN, Lombardi T. A retrospective clinico pathological analysis with review of literature of oral and cervical lympho epithelial cysts from a pathological perspective. Appl Sci. 2022;12(5):2525. doi:10.3390/app12052525 DOI: https://doi.org/10.3390/app12052525

[29] Sun Y, Sun H, Ma Z, Li M, Wang D. An empirical test of low carbon and sustainable financing’s spatial spillover effect. Energies. 2022;15(3):30952. doi:10.3390/en15030952 DOI: https://doi.org/10.3390/en15030952

[30] Bajda M, Hardygóra M. Analysis of the influence of the type of belt on the energy consumption of transport processes in a belt conveyor. Energies. 2021;14(19):6180. doi:10.3390/en14196180 DOI: https://doi.org/10.3390/en14196180

[31] Cintula B, Eleschová Ž, Cenký M, Janiga P, Bendík J, Beláň A. Three phase and single phase measurement of overhead power line impedance evaluation. Energies. 2021;14(19):6314. doi:10.3390/en14196314 DOI: https://doi.org/10.3390/en14196314

[32] Li H, et al. Multiphysics structured eddy current and thermography defects diagnostics system in moving mode. IEEE Trans Ind Inform. 2021;17(4):2566 2578. doi:10.1109/TII.2020.2997836 DOI: https://doi.org/10.1109/TII.2020.2997836

[33] Wang J, Apel DB, Xu H, Wei C, Skrzypkowski K. Evaluation of the effects of yielding rockbolts on controlling self initiated strainbursts: a numerical study. Energies. 2022;15(7):2574. doi:10.3390/en15072574 DOI: https://doi.org/10.3390/en15072574

[34] Lee J, An M, Kim Y, Seo J I. Optimal allocation for electric vehicle charging stations. Energies. 2021;14(18):5781. doi:10.3390/en14185781 DOI: https://doi.org/10.3390/en14185781

[35] Mojumder MRH, Antara FA, Hasanuzzaman M, Alamri B, Alsharef M. Electric vehicle to grid (V2G) technologies: impact on the power grid and battery. Sustainability. 2022;14(21):13856. doi:10.3390/su142113856 DOI: https://doi.org/10.3390/su142113856

[36] Jung MJ, Kim J, Lee S G, Baek D. Energy efficient driving scheduling for heterogeneous electric vehicles with consideration of overtaking. Energy Rep. 2023;9:2348 2358. doi:10.1016/j.egyr.2023.01.038 DOI: https://doi.org/10.1016/j.egyr.2023.01.038

[37] Meulenbroek P, et al. Fish communities, habitat use, and human pressures in the Upper Volta Basin, Burkina Faso, West Africa. Sustainability. 2019;11(19):5444. doi:10.3390/su11195444 DOI: https://doi.org/10.3390/su11195444

[38] Usamentiaga R, Venegas P. Infrared imaging and NDT. Appl Sci. 2021;11(7):73024. doi:10.3390/app11073024 DOI: https://doi.org/10.3390/app11073024

[39] Gentilucci M, Barbieri M, D’Aprile F, Zardi D. Analysis of extreme precipitation indices in the Marche region (central Italy), combined with the assessment of energy implications and hydrogeological risk. Energy Rep. 2020;6:804 810. doi:10.1016/j.egyr.2019.11.006 DOI: https://doi.org/10.1016/j.egyr.2019.11.006

[40] Vernier C, Loeillet D, Thomopoulos R, Macombe C. Adoption of ICTs in agri food logistics: potential and limitations for supply chain sustainability. Sustainability. 2021;13(12):6702. doi:10.3390/su13126702 DOI: https://doi.org/10.3390/su13126702

[41] Murano R, Maisano N, Selvaggi R, Pappalardo G, Pecorino B. Critical issues and opportunities for producing biomethane in Italy. Energies. 2021;14(9):2431. doi:10.3390/en14092431 DOI: https://doi.org/10.3390/en14092431

[42] Parrish NH, Llorens AJ, Driskell AE. An agent ensemble for thresholded multi target classification. Appl Sci. 2020;10(4):1376. doi:10.3390/app10041376 DOI: https://doi.org/10.3390/app10041376

[43] Guidolin M, Budau Petrea RA, Roberto O, Reggiani M, Menegatti E, Tagliapietra L. On the accuracy of IMUs for human motion tracking: a comparative evaluation [conference]. In: 2021 IEEE Int’l Conference on Mechatronics (ICM); Mar 2021:1 6. doi:10.1109/ICM46511.2021.9385684 DOI: https://doi.org/10.1109/ICM46511.2021.9385684

[44] Shin Y, et al. Design considerations for adding series inductors to reduce electromagnetic field interference in an over coupled WPT system. Energies. 2021;14(10):2791. doi:10.3390/en14102791 DOI: https://doi.org/10.3390/en14102791

[45] Schlesinger O, Vigderhouse N, Eytan D, Moshe Y. Blood pressure estimation from PPG signals using convolutional neural networks and Siamese network [conference]. In: ICASSP 2020 – 2020 IEEE Int’l Conf on Acoustics, Speech & Signal Processing; May 2020:1135 1139. doi:10.1109/ICASSP40776.2020.9053446 DOI: https://doi.org/10.1109/ICASSP40776.2020.9053446

[46] Braun M, et al. Development of combined load spectra for offshore structures subjected to wind, wave, and ice loading. Energies. 2022;15(2):2059. doi:10.3390/en15020559 DOI: https://doi.org/10.3390/en15020559

[47] Rudnicki K, Stefański TP, Żebrowski W. Open source coprocessor for integer multiple precision arithmetic. Electronics. 2020;9(7):1141. doi:10.3390/electronics9071141 DOI: https://doi.org/10.3390/electronics9071141

[48] Gao Y, Tao J, Fang Q, Wang Z Y, Li X Y, Xue F. POF: probability driven opportunistic forwarding for bike sharing system. IEEE Access. 2019;7:52214 52225. doi:10.1109/ACCESS.2019.2911729 DOI: https://doi.org/10.1109/ACCESS.2019.2911729

[49] T. Ganesan, “Machine learning-driven AI for financial fraud detection in IoT environments,” Int. J. HRM Organ. Behav., vol. 9, no. 4, pp. 9–25, Dec. 2021. DOI: https://doi.org/10.62650/ijhrmob.2021.v9.i04.pp9-21

[50] Ahmadi MH, Dehghani Madvar M, Sadeghzadeh M, Rezaei MH, Herrera M, Shamshirband S. Current status investigation and predicting carbon dioxide emission in Latin American countries by connectionist models. Energies. 2019;12(10):1916. doi:10.3390/en12101916 DOI: https://doi.org/10.3390/en12101916

[51] Data set: Wind turbine SCADA dataset [online]. Kaggle. May 22, 2025. https://www.kaggle.com/datasets/berkerisen/wind turbine scada dataset

[52] Chang S. A deep learning approach for localization systems of high speed objects. IEEE Access.2019;7:96521 96530. doi:10.1109/ACCESS.2019.2929444 DOI: https://doi.org/10.1109/ACCESS.2019.2929444

[53] Borge Diez D, Ortega Cabezas PM, Colmenar Santos A, Blanes Peiró JJ. Contribution of driving efficiency to vehicle to building. Energies. 2021;14(12):3483. doi:10.3390/en14123483 DOI: https://doi.org/10.3390/en14123483

[54] H. Nagarajan and S. R. Sitaraman, “Balanced performance merit on wind and solar energy contact with clean environment enrichment,” IEEE J. Electron Devices Soc., vol. 12, pp. 808–823, Jan. 2024, doi:10.1109/JEDS.2024.3358087. DOI: https://doi.org/10.1109/JEDS.2024.3358087

[55] B. Kadiyala, S. K. Alavilli, and A. A. Alfa, “Real-time decision making in IoT-enabled business intelligence: Insights from Likert scale surveys,” Int. J. Adv. Comput. Sci. Eng. Res., vol. 1, no. 1, pp. 1–10, Jan. 2025.

[56] Zhang H, Chen L, Qu Y, Zhao G, Guo Z. Support vector regression based on grid search method for short-term wind power forecasting. J Appl Math. 2014:835791. doi:10.1155/2014/835791 DOI: https://doi.org/10.1155/2014/835791

[57] Chen T, Guestrin C. XGBoost: a scalable tree boosting system [conference]. In: Proceedings of the 22nd ACM SIGKDD Int’l Conf on Knowledge Discovery and Data Mining (KDD ’16); Aug 2016:785 794. doi:10.1145/2939672.2939785 DOI: https://doi.org/10.1145/2939672.2939785

[58] M. H. Ali, M. M. Jaber, J. A. Daniel, C. C. Vignesh, I. Meenakshisundaram, B. S. Kumar, and P. Punitha, “Autonomous vehicles decision-making enhancement using self-determination theory and mixed-precision neural networks,” Multimedia Tools Appl., vol. 82, no. 3, pp. 14575–14592, Jan. 2023, doi: 10.1007/s11042-023-14375-4. DOI: https://doi.org/10.1007/s11042-023-14375-4

[59] S. Jayanthi, R. L. Kumar, P. Punitha, B. Muthu, and C. B. Sivaparthipan, “Sustainable energy harvesting techniques for underwater aquatic systems with multi-source and low-energy solutions,” Sustain. Comput. Inform. Syst., vol. 46, art. no. 101126, pp. 1–12, Apr. 2025, doi: 10.1016/j.suscom.2025.101126. DOI: https://doi.org/10.1016/j.suscom.2025.101126

Downloads

Published

19-09-2025

How to Cite

1.
Wang JK, Liu Y, Song S. Data-Driven Decision-Making Method of Intelligent Supervision and Command Platform in Offshore Wind Power Operation and Maintenance. EAI Endorsed Trans Energy Web [Internet]. 2025 Sep. 19 [cited 2025 Oct. 11];12. Available from: https://publications.eai.eu/index.php/ew/article/view/9527

Issue

Section

Deep Learning for Real-Time Prediction and Optimization in Renewable Energy Systems