DESIGN OF COMPREHENSIVE FRAMEWORK ON OPTIMIZATION METHODS IN DISTRIBUTED CLUSTERS
DOI:
https://doi.org/10.4108/eai.12-9-2018.155745Keywords:
Distributed Cluster, Resource Fairness, Resource Sharing, Hierarchical Cluster, MapReduceAbstract
MapReduce is a popular, open source programming paradigm to handle big data which is an industry standard large scale data processing system used by many companies like Yahoo, Google, Facebook, etc. The YARN framework uses low resource fairness algorithms such as FIFO, Capacity, Fair, DRF scheduler, whereas these schedulers are not suitable for heterogeneous Hadoop clusters. Therefore, an Enhanced Combined Regression Ranking (eCRRYARN) algorithm was proposed to enhance resource fairness. The proposed algorithm uses linear regression model to estimate the expected resources to be availed by the tenants. The order ranking is given to the estimated resource and the resources shared as per the ranking provided. Hence, the Hierarchical Hadoop Cluster Resource Sharing (HHCRS) algorithm has been adopted for hierarchical distributed cluster aiming to design a cost effective cluster for organization which is spread across the globe.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.