Jointly power allocation and phase shift optimization for RIS empowered downlink cellular networks
DOI:
https://doi.org/10.4108/eetinis.v10i4.4359Keywords:
6G, Optimization, Phase-Shaft Optimization, QoS, Resource Allocation, RIS, Throughput MaximizationAbstract
Reconfigurable Intelligent Surfaces (RIS) have been highlighted by the research community as a key enabling technology for the enhancement of next-generation wireless network performance, including energy efficiency, spectral efficiency, and network throughput. This paper investigates how RIS-assisted communication can effectively maximize the downlink throughput of a cellular network. Specifically, the paper considers a communication scenario where a single base station serves multiple ground users with the aid of an RIS placed on a building facade. For such a communication scenario, we considered an optimization problem aimed at maximizing the overall downlink throughput by jointly optimizing power allocation at the base station and phase shift of RIS reflecting elements, subject to power consumption and quality-of-service constraints. To address its non-convex nature, the original optimization problem has been divided into two subproblems. The first one, for power control with fixed phase shift values, is a convex problem that can be easily solved. Subsequently, a phase shift searching procedure to solve the non-convex problem of RIS phase shift optimization has been adopted. The results from numerical simulations show that the proposed method outperforms other conventional methods proposed in the literature. In addition, computational complexity analysis has been conducted to prove the low complexity of the proposed method.
Downloads
References
Truong PQ, Phan VC. Reconfigurable Intelligent Surfaces for Downlink Cellular Networks. In: Vo NS, Vien QT, Ha DB, editors. Industrial Networks and Intelligent Systems. vol. 444 of LNICST. Cham: Springer International Publishing; 2022. p. 20-32. DOI: https://doi.org/10.1007/978-3-031-08878-0_2
Bui TT, Nguyen LD, Hoang KH, Vo NS, Duong TQ. Joint Clustering and Resource Allocation Optimization in Ultra-Dense Networks with Multiple Drones as Small Cells Using Game Theory. Sensors. 2023;23(8). Available from: https://www.mdpi.com/1424-8220/23/8/3899. DOI: https://doi.org/10.3390/s23083899
Wikström G, Peisa J, Rugeland P, Johansson N, Parkvall S, Girnyk M, et al. Challenges and Technologies for 6G. In: 2020 2nd 6G Wireless Summit (6G SUMMIT); 2020. p. 1-5. DOI: https://doi.org/10.1109/6GSUMMIT49458.2020.9083880
Wang CX, Huang J, Wang H, Gao X, You X, Hao Y. 6G Wireless Channel Measurements and Models: Trends and Challenges. IEEE Vehicular Technology Magazine. 2020;15(4):22-32. DOI: https://doi.org/10.1109/MVT.2020.3018436
Gong S, Lu X, Hoang DT, Niyato D, Shu L, Kim DI, et al. Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey. IEEE Commun Surveys Tuts. 2020;22(4):2283-314. DOI: https://doi.org/10.1109/COMST.2020.3004197
Nguyen KK, Masaracchia A, Yin C. Deep Reinforcement Learning for Intelligent Reflecting Surface-assisted D2D Communications. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems. 2023 Jan;10(1):e1. Available from: https://publications.eai.eu/index.php/inis/article/view/2864. DOI: https://doi.org/10.4108/eetinis.v10i1.2864
Basar E, Renzo MD, Rosny JD, Debbah M, Alouini MS, Zhang R. Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access. 2019;7:116753-73. DOI: https://doi.org/10.1109/ACCESS.2019.2935192
Alghamdi R, Alhadrami R, Alhothali D, Almorad H, Faisal A, Helal S, et al. Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques. IEEE Access. 2020;8:202795-818. DOI: https://doi.org/10.1109/ACCESS.2020.3031959
Boulogeorgos AAA, Alexiou A. Performance Analysis of Reconfigurable Intelligent Surface-Assisted Wireless Systems and Comparison With Relaying. IEEE Access. 2020;8:94463-83. DOI: https://doi.org/10.1109/ACCESS.2020.2995435
Tao Q, Wang J, Zhong C. Performance Analysis of Intelligent Reflecting Surface Aided Communication Systems. IEEE Commun Lett. 2020;24(11):2464-8. DOI: https://doi.org/10.1109/LCOMM.2020.3011843
Kudathanthirige D, Gunasinghe D, Amarasuriya G. Performance Analysis of Intelligent Reflective Surfaces for Wireless Communication. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC); 2020. p. 1-6. DOI: https://doi.org/10.1109/ICC40277.2020.9148760
Cheng Y, Li KH, Liu Y, Teh KC. Outage Performance of Downlink IRS-Assisted NOMA Systems. In: GLOBECOM 2020 - 2020 IEEE Global Communications Conference; 2020. p. 1-6. DOI: https://doi.org/10.1109/GLOBECOM42002.2020.9322616
Huang C, Zappone A, Alexandropoulos GC, Debbah M, Yuen C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans Wireless Commun. 2019;18(8):4157-70. DOI: https://doi.org/10.1109/TWC.2019.2922609
HuayanGuo, Liang YC, Chen J, Larsson EG. Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks. IEEE Trans Wireless Commun. 2020;19(5):3064-76. DOI: https://doi.org/10.1109/TWC.2020.2970061
Cao Y, Lv T, Ni W. Intelligent Reflecting Surface Aided Multi-User mmWave Communications for Coverage Enhancement. In: 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications; 2020. p. 1-6. DOI: https://doi.org/10.1109/PIMRC48278.2020.9217160
Xu J, Tang J, Zou Y,Wen R, LiuW, He J. Sum throughput optimization of wireless powered IRS-assisted multiuser MISO system. Computer Networks. 2023:109984. Available from: https://www.sciencedirect.com/science/article/pii/S1389128623004292. DOI: https://doi.org/10.1016/j.comnet.2023.109984
Perović NS, Tran LN, Renzo MD, Flanagan MF. Achievable Rate Optimization for MIMO Systems With Reconfigurable Intelligent Surfaces. IEEE TransWireless Commun. 2021;20(6):3865-82. DOI: https://doi.org/10.1109/TWC.2021.3054121
Yu H, Tuan HD, Nasir AA, Duong TQ, Poor HV. Joint Design of Reconfigurable Intelligent Surfaces and Transmit Beamforming Under Proper and Improper Gaussian Signaling. IEEE J Sel Areas Commun. 2020; 38(11):2589-603. DOI: https://doi.org/10.1109/JSAC.2020.3007059
Mu X, Liu Y, Guo L, Lin J, Al-Dhahir N. Exploiting Intelligent Reflecting Surfaces in NOMA Networks: Joint Beamforming Optimization. IEEE Trans Wireless Commun. 2020;19(10):6884-98. DOI: https://doi.org/10.1109/TWC.2020.3006915
Wu Q, Zhang R. Weighted Sum Power Maximization for Intelligent Reflecting Surface Aided SWIPT. IEEE Commun Lett. 2020;9(5):586-90. DOI: https://doi.org/10.1109/LWC.2019.2961656
Wang P, Fang J, Yuan X, Chen Z, Li H. Intelligent Reflecting Surface-Assisted Millimeter Wave Communications: Joint Active and Passive Precoding Design. IEEE Trans Veh Technol. 2020;69(12):14960-73. DOI: https://doi.org/10.1109/TVT.2020.3031657
Shen H, Ding T, Xu W, Zhao C. Beamforming Design With Fast Convergence for IRS-Aided Full-Duplex Communication. IEEE Commun Lett. 2020;24(12):2849-53. DOI: https://doi.org/10.1109/LCOMM.2020.3014201
Abeywickrama S, Zhang R, Wu Q, Yuen C. Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization. IEEE Trans Commun. 2020;68(9):5849-63. DOI: https://doi.org/10.1109/TCOMM.2020.3001125
Wu Q, Zhang R. Joint Active and Passive Beamforming Optimization for Intelligent Reflecting Surface Assisted SWIPT Under QoS Constraints. IEEE J Sel Areas Commun. 2020;38(8):1735-48. DOI: https://doi.org/10.1109/JSAC.2020.3000807
Li S, Duo B, Yuan X, Liang YC, Renzo MD. Reconfigurable Intelligent Surface Assisted UAV Communication: Joint Trajectory Design and Passive Beamforming. IEEE Wireless Commun Lett. 2020;9(5):716-20. DOI: https://doi.org/10.1109/LWC.2020.2966705
Nguyen KK, Khosravirad SR, da Costa DB, Nguyen LD, Duong TQ. Reconfigurable Intelligent Surface-Assisted Multi-UAV Networks: Efficient Resource Allocation With Deep Reinforcement Learning. IEEE J Sel Topics Signal Process. 2022;16(3):358-68. DOI: https://doi.org/10.1109/JSTSP.2021.3134162
Nguyen KK, Masaracchia A, Sharma V, Poor HV, Duong TQ. RIS-Assisted UAV Communications for IoT With Wireless Power Transfer Using Deep Reinforcement Learning. IEEE J Sel Topics Signal Process. 2022;16(5):1086-96. DOI: https://doi.org/10.1109/JSTSP.2022.3172587
Ren H, Zhang Z, Peng Z, Li L, Pan C. Energy Minimization in RIS-Assisted UAV-Enabled Wireless Power Transfer Systems. IEEE Internet Things J. 2023;10(7):5794-809. DOI: https://doi.org/10.1109/JIOT.2022.3150178
Nguyen MHT, Garcia-Palacios E, Do-Duy T, Dobre OA, Duong TQ. UAV-Aided Aerial Reconfigurable Intelligent Surface Communications With Massive MIMO System. IEEE Trans on Cogn Commun Netw. 2022;8(4):1828-38. DOI: https://doi.org/10.1109/TCCN.2022.3187098
Ha DB, Truong VT, Lee Y. Intelligent Reflecting Surface assisted RF Energy Harvesting Mobile Edge Computing NOMA Networks: Performance Analysis and Optimization. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems. 2022 Aug;9(32):e5. Available from: https://publications.eai.eu/index.php/inis/article/view/1376. DOI: https://doi.org/10.4108/eetinis.v9i32.1376
Merluzzi M, Costanzo F, Katsanos KD, Alexandropoulos GC, Lorenzo PD. Power Minimizing MEC Offloading with QoS Constraints over RIS-Empowered Communications. In: GLOBECOM 2022 - 2022 IEEE Global Communications Conference; 2022. p. 5457-62. DOI: https://doi.org/10.1109/GLOBECOM48099.2022.10001259
Sarfraz M, Alshahrani HM, Tarmissi K, Alshahrani H, Elfaki MA, Ahmed MH, et al. Intelligent Reflecting Surfaces Enhanced Mobile Edge Computing: Minimizing the Maximum Computational Time. Sensors. 2022;22(22). Available from: https://www.mdpi.com/1424-8220/22/22/8719. DOI: https://doi.org/10.3390/s22228719
Xu Y, Zhang T, Liu Y, Yang D, Xiao L, Tao M. Computation Capacity Enhancement by Joint UAV and RIS Design in IoT. IEEE Internet Things J. 2022;9(20):20590-603. DOI: https://doi.org/10.1109/JIOT.2022.3178983
Nguyen MN, Nguyen LD, Duong TQ, Tuan HD. Real-Time Optimal Resource Allocation for Embedded UAV Communication Systems. IEEE Wireless Commun Lett. 2019;8(1):225-8. DOI: https://doi.org/10.1109/LWC.2018.2867775
Bor-Yaliniz RI, El-Keyi A, Yanikomeroglu H. Efficient 3- D placement of an aerial base station in next generation cellular networks. In: IEEE ICC; 2016. p. 1-5. DOI: https://doi.org/10.1109/ICC.2016.7510820
Mozaffari M, Saad W, Bennis M, mérouane Debbah. Efficient Deployment of Multiple Unmanned Aerial Vehicles for Optimal Wireless Coverage. IEEE Commun Lett. 2016 Aug;20:1647-50. DOI: https://doi.org/10.1109/LCOMM.2016.2578312
Al-Hourani A, Kandeepan S, Lardner S. Optimal LAP Altitude for Maximum Coverage. IEEE Wireless Commun Lett. 2014;3(6):569-72. DOI: https://doi.org/10.1109/LWC.2014.2342736
Xie X, Fang F, Ding Z. Joint Optimization of Beamforming, Phase-Shifting and Power Allocation in a Multi-cluster IRS-NOMA Network. IEEE Trans Veh Technol. 2021:1-1. DOI: https://doi.org/10.1109/TVT.2021.3090255
Wu Q, Zhang R. Beamforming Optimization for Wireless Network Aided by Intelligent Reflecting Surface With Discrete Phase Shifts. IEEE Trans Commun. 2020;68(3):1838-51. DOI: https://doi.org/10.1109/TCOMM.2019.2958916
Nguyen LD, Tuan HD, Duong TQ, Dobre OA, Poor HV. Downlink Beamforming for Energy-Efficient Heterogeneous Networks With Massive MIMO and Small Cells. IEEE Trans Wireless Commun. 2018;17(5):3386-400. DOI: https://doi.org/10.1109/TWC.2018.2811472
Duong TQ. Real Time Convex Optimisation for 5G Networks and Beyond. Institution of Engineering and Technology (IET); 2021.
Grant M, Boyd S. CVX: MATLAB Software for Disciplined Convex Programming, version 2.1; 2014. http://cvxr.com/cvx.
Wu Q, Zhang R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans Wireless Commun. 2019;18(11):5394-409. DOI: https://doi.org/10.1109/TWC.2019.2936025
Do-Duy T, Nguyen LD, Duong TQ, Khosravirad S, Claussen H. Joint Optimisation of Real-time Deployment and Resource Allocation for UAV-Aided Disaster Emergency Communications. IEEE J Sel Areas Commun. 2021:1-1. DOI: https://doi.org/10.1109/JSAC.2021.3088662
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 EAI Endorsed Transactions on Industrial Networks and Intelligent Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.