Coverage Probability of EH-enabled LoRa networks - A Deep Learning Approach

Authors

DOI:

https://doi.org/10.4108/eetinis.v12i2.6780

Keywords:

Coverage probability, deep learning, energy harvesting, long range, power beacon

Abstract

The performance of energy harvesting (EH)-enabled long-range (LoRa) networks is analyzed in this work. Specifically, we employ deep learning (DL) to estimate the coverage probability (Pcov) of the considered networks. Our study incorporates a general fading distribution, specifically the Nakagami-m distribution, and utilizes tools from stochastic geometry (SG) to model the spatial distributions of all nodes and end-devices (EDs) with EH capability. The DL approach is employed to overcome the limitations of model-based methods that can only evaluate the Pcov under simplified network conditions. Therefore, we propose a deep neural network (DNN) that estimates the Pcov with high accuracy compared to the ground truth values. Additionally, we demonstrate that DL significantly outperforms the Monte Carlo simulation approach in terms of resource consumption, including time and memory.

Downloads

Download data is not yet available.

References

[1] Goursaud, C. and Gorce, J.M. (2015) Dedicated net-works for IoT: PHY / MAC state of the art and chal-lenges. EAI Endorsed Transactions on Internet of Things 1(1): 150597. doi:10.4108/eai.26-10-2015.150597, URL https://doi.org/10.4108/eai.26-10-2015.150597. DOI: https://doi.org/10.4108/eai.26-10-2015.150597

[2] Raza, U., Kulkarni, P. and Sooriyabandara, M. (2017) Low power wide area networks: An overview. IEEE Communications Surveys and Tutorials 19(2): 855–873. doi:10.1109/COMST.2017.2652320. DOI: https://doi.org/10.1109/COMST.2017.2652320

[3] Tu, L.T., Bradai, A., Pousset, Y. and Aravanis, A.I.(2022) On the spectral efficiency of lora networks: Performance analysis, trends and optimal points of operation. IEEE Transactions on Communications 70(4): 2788–2804. doi:10.1109/TCOMM.2022.3148784. DOI: https://doi.org/10.1109/TCOMM.2022.3148784

[4] Hoang, T.M., Duong, T.Q., Vo, N.S. and Kundu, C. (2017) Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Communications Letters 6(2): 174–177. doi:10.1109/LWC.2017.2650224. DOI: https://doi.org/10.1109/LWC.2017.2650224

[5] Nasir, A.A., Zhou, X., Durrani, S. and Kennedy, R.A. (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans-actions on Wireless Communications 12(7): 3622–3636. doi:10.1109/TWC.2013.062413.122042. DOI: https://doi.org/10.1109/TWC.2013.062413.122042

[6] Saikia, P., Singh, K., Huang, W.J. and Duong, T.Q. (2024) Hybrid deep reinforcement learning for enhancing localization and communication efficiency in ris-aided cooperative isac systems. IEEE Internet of Things Journal : 1–1doi:10.1109/JIOT.2024.3411158. DOI: https://doi.org/10.1109/JIOT.2024.3411158

[7] Ansere, J.A., Gyamfi, E., Sharma, V., Shin, H., Dobre, O.A. and Duong, T.Q. (2024) Quantum deep reinforcement learning for dynamic resource allocation in mobile edge computing-based iot systems. IEEE Transactions on Wireless Communications 23(6): 6221–6233. doi:10.1109/TWC.2023.3330868. DOI: https://doi.org/10.1109/TWC.2023.3330868

[8] Hazarika, B., Singh, K., Paul, A. and Duong, T.Q. (2024) Hybrid machine learning approach for resource allo-cation of digital twin in uav-aided internet-of-vehicles networks. IEEE Transactions on Intelligent Vehicles 9(1): 2923–2939. doi:10.1109/TIV.2023.3335277. DOI: https://doi.org/10.1109/TIV.2023.3335277

[9] Le, N.P., Vo, N.S., Hoang, M.T. and Tran, D.D. (2017) Unified analysis of energy harvesting–based mimo relay wireless systems over nakagami-m fading channels. Transactions on Emerging Telecommunications Technologies 28(10): e3160. doi:https://doi.org/10.1002/ett.3160, URL https: //onlinelibrary.wiley.com/doi/abs/10.1002/ett. 3160. E3160 ett.3160, https://onlinelibrary.wiley. com/doi/pdf/10.1002/ett.3160. DOI: https://doi.org/10.1002/ett.3160

[10] Zheng, J. (2023) Analysis of mutual inductance between transmitter and receiver coils in wireless power transfer system of electric vehicle. Advances in Electrical and Elec-tronic Engineering 21(3). doi:10.15598/aeee.v21i3.4991, URL http://dx.doi.org/10.15598/aeee.v21i3.4991. DOI: https://doi.org/10.15598/aeee.v21i3.4991

[11] Roy, J.S. and MISHRA, S.S. (2023) Sc-fdma uplink system in heavily faded areas with low signal-to-noise ratio. Advances in Electrical and Electronic Engineering 21(3). doi:10.15598/aeee.v21i3.4987, URL http://dx. doi.org/10.15598/aeee.v21i3.4987. DOI: https://doi.org/10.15598/aeee.v21i3.4987

[12] Huan, N.T., Duy, T.T., Tu, L.T., Sang, N.Q., Ta, Q.H. and Tuan, P.V. (2022) Incremental coopera-tion based multi-hop relaying scheme with foun-tain codes, wirelessly energy harvesting and partial relay selection. In 2022 International Conference on Advanced Technologies for Communications (ATC): 338–343. doi:10.1109/ATC55345.2022.9943044. DOI: https://doi.org/10.1109/ATC55345.2022.9943044

[13] Nguyen, T.N., Duy, T.T., Tran, P.T. and Voznak, M. (2016) Performance evaluation of user selection protocols in random networks with energy harvesting and hardware impairments. Advances in Electrical and Electronic Engineering 14(4). doi:10.15598/aeee.v14i4.1783, URL https://doi.org/10.15598/aeee.v14i4.1783. DOI: https://doi.org/10.15598/aeee.v14i4.1783

[14] Georgiou, O. and Raza, U. (2017) Low power wide area network analysis: Can lora scale? IEEE Wireless Communications Letters 6(2): 162–165. doi:10.1109/LWC.2016.2647247. DOI: https://doi.org/10.1109/LWC.2016.2647247

[15] Tu, L.T., Bradai, A. and Pousset, Y. (2020) A new closed-form expression of the coverage probability for different qos in lora networks. In ICC 2020 - 2020 IEEE International Conference on Communications (ICC): 1–6. doi:10.1109/ICC40277.2020.9148720. DOI: https://doi.org/10.1109/ICC40277.2020.9148720

[16] Tu, L.T., Bradai, A. and Pousset, Y. (2022) Coverage probability and spectral efficiency analysis of multigateway downlink lora networks. In ICC 2022 -IEEE International Conference on Communications: 1–6. doi:10.1109/ICC45855.2022.9838363. DOI: https://doi.org/10.1109/ICC45855.2022.9838363

[17] Beltramelli, L., Mahmood, A., Österberg, P. and Gidlund, M. (2021) Lora beyond aloha: An investigation of alternative random access protocols. IEEE Transactions on Industrial Informatics 17(5): 3544–3554. doi:10.1109/TII.2020.2977046. DOI: https://doi.org/10.1109/TII.2020.2977046

[18] Orfei, Francesco and Benedetta Mezzetti, Chiara and Cottone, Francesco (2016) Vibrations powered lora sensor: An electromechanical energy harvester working on a real bridge. In 2016 IEEE SENSORS (IEEE). doi:10.1109/icsens.2016.7808752, URL http://dx.doi.org/10.1109/ICSENS.2016.7808752. DOI: https://doi.org/10.1109/ICSENS.2016.7808752

[19] Dalpiaz, G., Longo, A., Nardello, M., Passerone, R. and Brunello, D. (2018) A battery-free non-intrusive power meter for low-cost energy monitoring. In 2018 IEEE Industrial Cyber-Physical Systems (ICPS) (IEEE): 653–658. doi:10.1109/icphys.2018.8390784, URL http: //dx.doi.org/10.1109/ICPHYS.2018.8390784. DOI: https://doi.org/10.1109/ICPHYS.2018.8390784

[20] Bathre, M. and Das, P.K. (2022) Water supply monitoring system with self-powered lora based wireless sensor system powered by solar and hydroelectric energy harvester. Computer Standards & Interfaces 82:103630. doi:10.1016/j.csi.2022.103630, URL http:// dx.doi.org/10.1016/j.csi.2022.103630. DOI: https://doi.org/10.1016/j.csi.2022.103630

[21] M. Meli, P.B. (2016) Powering long range wireless nodes with harvested energy. In Wireless Congress 2016: Systems & Applications (Wireless Congress). URL https://digitalcollection.zhaw.ch/handle/11475/7041.

[22] Delgado, Carmen and Sanz, José María and Blondia, Chris and Famaey, Jeroen (2021) Batteryless lorawan communications using energy harvesting: Modeling and characterization. IEEE Internet of Things Journal 8(4): 2694–2711. doi:10.1109/JIOT.2020.3019140. DOI: https://doi.org/10.1109/JIOT.2020.3019140

[23] Hamdi, R., Baccour, E., Erbad, A., Qaraqe, M. and Hamdi, M. (2022) Lora-rl: Deep reinforcement learning for resource management in hybrid energy lora wireless networks. IEEE Internet of Things Journal 9(9): 6458–6476. doi:10.1109/JIOT.2021.3110996. DOI: https://doi.org/10.1109/JIOT.2021.3110996

[24] Tu, L.T., Bradai, A., Ahmed, O.B., Garg, S., Pousset, Y. and Kaddoum, G. (2022) Energy efficiency optimization in lora networks—a deep learning approach. IEEE Transactions on Intelligent Transportation Systems : 1–13doi:10.1109/TITS.2022.3183073. DOI: https://doi.org/10.1109/TITS.2022.3183073

[25] Georgiou, O., Psomas, C., Demarchou, E. and Krikidis, I. (2021) Lora network performance under ambient energy harvesting and random transmission schemes. In ICC 2021 - IEEE International Conference on Communications: 1–6. doi:10.1109/ICC42927.2021.9500756. DOI: https://doi.org/10.1109/ICC42927.2021.9500756

[26] Nguyen, T.T.H., Nguyen, T.N., Duy, T.T., Son, N.H., Hanh, T., Vu, M.B. and Tu, L.T. (2024) Coverage probability of energy harvesting enabled lora networks with stochastic geometry. Journal of Information and Telecommunication 8(2): 262–279. doi:10.1080/24751839.2023.2281144. DOI: https://doi.org/10.1080/24751839.2023.2281144

[27] Reynders, B., Meert, W. and Pollin, S. (2017) Power and spreading factor control in low power wide area networks. In 2017 IEEE International Conference on Communications (ICC): 1–6. doi:10.1109/ICC.2017.7996380. DOI: https://doi.org/10.1109/ICC.2017.7996380

[28] Nguyen, T.H., Jung, W.S., Tu, L.T., Chien, T.V., Yoo, D. and Ro, S. (2020) Performance analysis and optimization of the coverage probability in dual hop lora networks with different fading channels. IEEE Access 8: 107087–107102. doi:10.1109/ACCESS.2020.3000600. DOI: https://doi.org/10.1109/ACCESS.2020.3000600

[29] Kingma, D.P. and Ba, J. (2017), Adam: A method for stochastic optimization. URL https://arxiv.org/abs/1412.6980. 1412.6980.

[30] Nguyen, Q.S., Nguyen, V.H., Tran, T.D., Nguyen, L.N. and Tu, L.T. (2023) On the security and reliability trade-off of the satellite terrestrial networks with fountain codes and friendly jamming. EAI Endorsed Trans. Industrial Netw. Intel. Sys. 10(4). doi:10.4108/eetinis.v10i4.4192. DOI: https://doi.org/10.4108/eetinis.v10i4.4192

[31] Nam, P.M., Dinh, P.N., Nhat, N.L., Lam-Thanh, T. and Le-Tien, T. (2024) On the performance of the relay selection in multi-hop cluster-based wireless networks with multiple eavesdroppers under equally correlated rayleigh fading. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems 11(3). doi:10.4108/eetinis.v11i3.4728. DOI: https://doi.org/10.4108/eetinis.v11i3.4728

Downloads

Published

05-12-2024

How to Cite

Nguyen, T.-T.-H., Cong-Hung, T., Hong-Son, N., Hanh, T., Trung Duy, T., & Tu, L.-T. (2024). Coverage Probability of EH-enabled LoRa networks - A Deep Learning Approach. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 12(2). https://doi.org/10.4108/eetinis.v12i2.6780

Funding data