Optimizing Energy Harvesting Efficiency for IRS-aided TS-SWIPT System with Continuous and Discrete Phase Shifts

Authors

DOI:

https://doi.org/10.4108/eetinis.v12i3.9356

Keywords:

energy harvesting efficiency, intelligent reflecting surface (IRS), SWIPT, continuous/discrete phase shifts, time-switching (TS)

Abstract

In recent years, intelligent reflecting surfaces (IRS) have emerged as a groundbreaking technology for enhancing spectral and energy efficiency in wireless communication, offering a cost-effective and energy-efficient solution. This study explores a simultaneous wireless information and power transfer (SWIPT) network employing time-switching (TS) receivers, where a base station (BS) transmits both data and energy signals to users with the assistance of an IRS. By appropriately tuning the phase shifts of IRS elements, transmission performance is optimized in terms of both energy harvesting and data efficiency. The primary objective is to maximize energy harvesting efficiency, defined as the ratio of total harvested energy at the users to the transmission power of the BS, while ensuring the required information rate, adhering to power constraints, and considering practical limitations on phase shifts. To tackle this challenge, an iterative algorithm incorporating non-convex approximations is developed to jointly optimize information beamformers, energy covariance matrix, and TS factors. Finally, numerical simulations validate the convergence and effectiveness of the proposed methodology.

Downloads

Download data is not yet available.

References

[1] Jiang, W., Han, B., Habibi, M.A. and Schotten, H.D. (2021) The road towards 6g: A comprehensive survey. IEEE Open Journal of the Communications Society 2: 334–366. doi:10.1109/OJCOMS.2021.3057679.

[2] Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Li, J., Niyato, D., Dobre, O. et al. (2021) 6g internet of things: A comprehensive survey. IEEE Internet of Things Journal 9(1): 359–383. doi:10.1109/JIOT.2021.3103320.

[3] De Alwis, C., Kalla, A., Pham, Q.V., Kumar, P., Dev, K., Hwang, W.J. and Liyanage, M. (2021) Survey on 6g frontiers: Trends, applications, requirements, technologies and future research. IEEE Open Journal of the Communications Society 2: 836–886. doi:10.1109/OJCOMS.2021.3071496.

[4] Xu, J., Liu, L. and Zhang, R. (2014) Multiuser miso beamforming for simultaneous wireless information and power transfer. IEEE Transactions on Signal Processing 62(18): 4798–4810. doi:10.1109/TSP.2014.2340817.

[5] Ashraf, N., Sheikh, S.A., Liaqat, M. and Khan, S.A. (2025) Performance analysis of swipt-assisted cooperative noma network with non-linear eh, interference and imperfect sic. IEEE Access doi:10.1109/ACCESS.2025.3563111.

[6] Zhao, N., Zhang, S., Yu, F.R., Chen, Y., Nallanathan, A. and Leung, V.C. (2017) Exploiting interference for energy harvesting: A survey, research issues, and challenges. IEEE Access 5: 10403–10421. doi:10.1109/ACCESS.2017.2705638.

[7] Perera, T.D.P., Jayakody, D.N.K., Sharma, S.K., Chatzinotas, S. and Li, J. (2017) Simultaneous wireless information and power transfer (swipt): Recent advances and future challenges. IEEE Communications Surveys & Tutorials 20(1): 264–302. doi:10.1109/COMST.2017.2783901.

[8] Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D.W.K. and Schober, R. (2014) Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine 52(11): 104–110. doi:10.1109/MCOM.2014.6957150.

[9] Clerckx, B., Zhang, R., Schober, R., Ng, D.W.K., Kim, D.I. and Poor, H.V. (2018) Fundamentals of wireless information and power transfer: From rf energy harvester models to signal and system designs. IEEE Journal on Selected Areas in Communications 37(1): 4–33. doi:10.1109/JSAC.2018.2872615.

[10] Psomas, C., Ntougias, K., Shanin, N., Xu, D., Mayer, K., Tran, N.M., Cottatellucci, L. et al. (2024) Wireless information and energy transfer in the era of 6g communications. Proceedings of the IEEE doi:10.1109/JPROC.2024.3395178.

[11] Lee, H., Lee, K.J., Kim, H. and Lee, I. (2018) Joint transceiver optimization for miso swipt systems with time switching. IEEE Transactions on Wireless Communications 17(5): 3298–3312. doi:10.1109/TWC.2018.2809734.

[12] Tang, J., Luo, J., Liu, M., So, D.K., Alsusa, E., Chen, G., Wong, K.K. et al. (2019) Energy efficiency optimization for noma with swipt. IEEE Journal of Selected Topics in Signal Processing 13(3): 452–466. doi:10.1109/JSTSP.2019.2898114.

[13] Jiang, R., Xiong, K., Fan, P., Zhang, Y. and Zhong, Z. (2019) Power minimization in swipt networks with coexisting power-splitting and time-switching users under nonlinear eh model. IEEE Internet of Things Journal 6(5): 8853–8869. doi:10.1109/JIOT.2019.2923977.

[14] Goktas, M.B., Dursun, Y. and Ding, Z. (2023) Irs and swipt-assisted full-duplex noma for 6g ummtc. IEEE Transactions on Green Communications and Networking 7(4): 1957–1970. doi:10.1109/TGCN.2023.3289505.

[15] Wu, Q., Guan, X. and Zhang, R. (2021) Intelligent reflecting surface-aided wireless energy and information transmission: An overview. Proceedings of the IEEE 110(1): 150–170. doi:10.1109/JPROC.2021.3121790.

[16] Han, H., Zhao, J., Zhai, W., Xiong, Z., Niyato, D., Di Renzo, M., Pham, Q.V. et al. (2021) Reconfigurable intelligent surface aided power control for physical-layer broadcasting. IEEE Transactions on Communications 69(11): 7821–7836. doi:doi=10.1109/TCOMM.2021.3104871.

[17] Basar, E., Alexandropoulos, G.C., Liu, Y., Wu, Q., Jin, S., Yuen, C., Dobre, O.A. et al. (2024) Reconfigurable intelligent surfaces for 6g: Emerging hardware architectures, applications, and open challenges. IEEE Vehicular Technology Magazine doi:10.1109/MVT.2024.3415570.

[18] Wu, Q. and Zhang, R. (2019) Weighted sum power maximization for intelligent reflecting surface aided swipt. IEEE Wireless Communications Letters 9(5): 586– 590. doi:10.1109/LWC.2019.2961656.

[19] Sadia, H., Hassan, A.K., Abbas, Z.H., Abbas, G., Baker, T. and Saeed, N. (2025) Maximizing energy efficiency in irs-assisted phase cooperative ps-swipt based self-sustainable iot network. IEEE Open Journal of the Communications Society 6: 4311–4327. doi:10.1109/OJCOMS.2025.3570094.

[20] Wei, Y., Peng, Z., Tang, J., Zhang, X., Wong, K.K. and Chambers, J. (2024) Max-min fair beamforming design for a ris-assisted system with swipt. IEEE Transactions on Vehicular Technology 73(8): 12148–12153. doi:10.1109/TVT.2024.3371539.

[21] Zhu, G., Mu, X., Guo, L., Huang, A. and Xu, S. (2024) Robust resource allocation for star-ris assisted swipt systems. IEEE Transactions on Wireless Communications 23(6): 5616–5631. doi:10.1109/TWC.2023.3327502.

[22] Amiri, M., Vaezpour, E., Javadi, S., Mili, M.R., Bennis, M. and Jorswieck, E. (2025) Resource allocation in star-ris-aided swipt with rsma via meta-learning. IEEE Open Journal of the Communications Society doi:10.1109/OJCOMS.2025.3556484.

[23] Li, Y., Wang, J., Zou, Y., Xie, W. and Liu, Y. (2024) Weighted sum power maximization for star-ris assisted swipt systems. IEEE Transactions on Wireless Communications 23(12): 18394–18408. doi:10.1109/TWC.2024.3467160.

[24] Xie, W., Qin, L., Wang, J., Wu, W., Li, X., Xu, H. and Yang, L. (2025) Simultaneous wireless information and power transfer for star-ris-assisted aav networks. IEEE Internet of Things Journal 12(12): 19915–19928. doi:10.1109/JIOT.2025.3542883.

[25] Liu, J., Xiong, K., Lu, Y., Ng, D.W.K., Zhong, Z. and Han, Z. (2020) Energy efficiency in secure irs-aided swipt. IEEE Wireless Communications Letters 9(11): 1884–1888. doi:10.1109/LWC.2020.3006837.

[26] Wang, T., Fang, F. and Ding, Z. (2022) An sca and relaxation based energy efficiency optimization for multi-user ris-assisted noma networks. IEEE Transactions on Vehicular Technology 71(6): 6843–6847. doi:10.1109/TVT.2022.3162197.

[27] Yang, Z. and Zhang, Y. (2021) Beamforming optimization for ris-aided swipt in cell-free mimo networks. China communications 18(9): 175–191. doi:10.23919/JCC.2021.09.014.

[28] Li, Z., Chen, W., Wu, Q., Wang, K. and Li, J. (2021) Joint beamforming design and power splitting optimization in irs-assisted swipt noma networks. IEEE Transactions on Wireless Communications 21(3): 2019–2033. doi:10.1109/TWC.2021.3108901.

[29] Tuan, P.V. and Son, P.N. (2022) Intelligent reflecting surface assisted transceiver design optimization in non-linear swipt network with heterogeneous users. Wireless Networks 28(5): 1889–1908. doi:https://doi.org/10.1007/s11276-022-02938-6.

[30] Zargari, S., Hakimi, A., Tellambura, C. and Herath, S. (2022) Multiuser miso ps-swipt systems: Active or passive ris? IEEE Wireless Communications Letters 11(9): 1920–1924.

[31] Yu, X., Shen, J.C., Zhang, J. and Letaief, K.B. (2016) Alternating minimization algorithms for hybrid precoding in millimeter wave mimo systems. IEEE Journal of Selected Topics in Signal Processing 10(3): 485–500. doi:10.1109/JSTSP.2016.2523903.

[32] Marks, B.R. and Wright, G.P. (1978) A general inner approximation algorithm for nonconvex mathematical programs. Operations research 26(4): 681–683. doi:https://doi.org/10.1287/opre.26.4.681.

[33] Gautam, S., Lagunas, E., Chatzinotas, S. and Ottersten, B. (2021) Feasible point pursuit and successive convex approximation for transmit power minimization in swipt-multigroup multicasting systems. IEEE Transactions on Green Communications and Networking 5(2): 884–894. doi:10.1109/TGCN.2021.3050736.

[34] Tuan, P.V., Nguyen-Duy-Nhat, V., Le, M.T., Nguyen, H.V., Quan, V.A.N., Son, P.N. and Koo, I. (2024) Enhancing energy harvesting efficiency for irs-aided ts-swipt network with practical phase shifts. In International Conference on Industrial Networks and Intelligent Systems (Springer): 155–165. doi:https://doi.org/10.1007/978-3-031-67357-3_11.

[35] Zheng, B., You, C., Mei, W. and Zhang, R. (2022) A survey on channel estimation and practical passive Communications Surveys & Tutorials 24(2): 1035–1071. doi:10.1109/COMST.2022.3155305.

[36] Wang, R., Wang, Z., Liu, L., Zhang, S. and Jin, S. (2024) Reducing channel estimation and feedback overhead in irs-aided downlink system: A quantize-then-estimate approach. IEEE Transactions on Wireless Communications doi:10.1016/j.icte.2023.06.004.

[37] Kwon, D. and Kim, D.K. (2024) Channel estimation overhead reduction scheme and its impact in irs-assisted systems. ICT Express 10(1): 58–64.doi:10.1016/j.icte.2023.06.004.

[38] Hu, S., Wei, Z., Cai, Y., Liu, C., Ng, D.W.K. and Yuan, J. (2021) Robust and secure sum-rate maximization for multiuser miso downlink systems with self-sustainable irs. IEEE Transactions on Communications 69(10): 7032–7049. doi:10.1109/TCOMM.2021.3097140.

[39] Han, Y., Tang, W., Jin, S., Wen, C.K. and Ma, X. (2019) Large intelligent surface-assisted wireless communication exploiting statistical csi. IEEE transactions on vehicular technology 68(8): 8238–8242. doi:10.1109/TVT.2019.2923997.

[40] Haochen, L., Zhiwen, P., Bin, W., Nan, L. and Xiaohu, Y. (2025) Statistical csi based beamforming for reconfigurable intelligent surface aided miso systems with channel correlation. China Communications 22(5): 14–27. doi:10.23919/JCC.ja.2022-0713.

[41] Zhou, G., Pan, C., Ren, H., Wang, K. and Nallanathan, A. (2020) A framework of robust transmission design for irs-aided miso communications with imperfect cascaded channels. IEEE Transactions on Signal Processing 68: 5092–5106. doi:10.1109/TSP.2020.3019666.

[42] Pan, C., Zhou, G., Zhi, K., Hong, S., Wu, T., Pan, Y., Ren, H. et al. (2022) An overview of signal processing techniques for ris/irs-aided wireless systems. IEEE Journal of Selected Topics in Signal Processing 16(5): 883–917. doi:10.1109/JSTSP.2022.3195671.

[43] Grant, M. and Boyd, S. (2020), Cvx: Matlab software for disciplined convex programming, version 2.2. URL https://web.cvxr.com/cvx/cvx-w64.zip.

[44] Razaviyayn, M. (2014) Successive convex approximation: Analysis and applications. Ph.D. thesis, University of Minnesota. URL https://conservancy.umn.edu/server/api/core/bitstreams/88697b6c-6385-4795-9a55-cb31ec861232/content.

[45] Boyd, S. and Vandenberghe, L. (2004) Convex optimization (Cambridge university press). URL https://xiesaining.wordpress.com/wp-content/uploads/2012/09/mlss2011_vandenberghe_convex.pdf.

[46] Ben-Tal, A. and Nemirovski, A. (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications (SIAM). URL https://www2. isye.gatech.edu/~nemirovs/lmco_run_prf.pdf.

[47] Wu, Q. and Zhang, R. (2019) Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE transactions on wireless communications 18(11): 5394–5409. doi:10.1109/TWC.2019.2936025.

Downloads

Published

02-09-2025

How to Cite

Pham-Viet, T., Ngo, V.-Q.-B., Do, Q. V., & Koo, I. (2025). Optimizing Energy Harvesting Efficiency for IRS-aided TS-SWIPT System with Continuous and Discrete Phase Shifts. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 12(3). https://doi.org/10.4108/eetinis.v12i3.9356